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MONOTONE PERTURBATIONS
OF THE LAPLACIAN IN L'(RY)

BY
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ABSTRACT

The semilinear perturbation of Poisson’s equation (E): —Au + B(u)D f, where
B is a maximal monotone graph in R, has been investigated by Ph. Bénilan, H.
Brézis and M. Crandall for f € L'(R"), N = 1, under the assumptions 0 € 8(0)
if N23 and 0€B(0)NIntB(R) if N=1,2. We discuss in this paper the
solvability and well-posedness of (E) in terms of any maximal monotone graph
B. In particular, if B takes only positive values and N =3 we prove that no
solution exists; if N =2 we give necessary and sufficient conditions on 8 and f
for (E) to be solvable in a natural sense.

Introduction

This paper deals with the following nonlinear perturbation of Poisson’s
equation in RN, N=1:

(E) = (Egyn) ~Au+Bu)>f

where 8 is a maximal monotone graph in R (m.m.g. for short; see e.g. Brézis [4]).
In particular you can assume throughout that 8 is a continuous, nondecreasing
function on R and write (E) as an equality. The function f will belong to L'(R").
Incase 0€B(0)if N=3 or 0€B0)NInt B(R) if N =1,2 we owe Bénilan,
Brézis and Crandall [2] a detailed study of (E): for every f € L'(R") they obtain
a solution u € Wi i(R") such that w =Au + f € B(u) a.e.” is integrable. If u is
chosen in the appropriate class (see discussion to follow) w is uniquely
determined and the map T : f— w is an ordered contraction in L'(R"); we say
that the operator A = —AeB™' (defined by Aw = —Au) is m-accretive in
L'(R™). This is an important property for then A generates a semigroup of
contractions in L'(R") that enables us to solve the evolution equation

* w=pg(u)if B is a function.
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256 J. L. VAZQUEZ Isr. J. Math.

u—AB'(u)=0 inRYX]0, T[
(Pev)

u(0,x) = ul(x)€ L'(RY)

via discretization in time (Crandall-Liggett’s Theorem, see [5], [7]).

In [6] Crandall and Evans consider equation (E) in dimension N =1 for 8 a
m.m.g. such that B(R)C (0,), imposing conditions at infinity u'(+w)=0.
Attention to this case had been drawn by T. Kurtz [10] in the particular form
e' —u"=f, u'(xx)=0. Crandall and Evans show that the problem is solvable
only if 8 is integrable at —o and in that case A is accretive and R(I+A)=
LiR)={f € L'R): [ f>0} = D(A)so that (P.,) may be solved as hinted above
for initial data u, € L1(R).

Bénilan and Brézis [1] consider (E) for non-negative 8, B(R)20, in N=3
when studying the Thomas-Fermi equation.

S. Fisher considers in [8] a more general situation where 8 is a continuous
function, not necessarily monotone (N = 1).

Our concern in this paper is to complete the discussion of equation (E) under
suitable conditions at infinity (if any needed) in terms of all possible m.m.g. 8
and for fEL'(RY), N=1:

N =2. The main novelty appears when $ takes on only positive (or only
negative) values. We then pose the problem consisting of equation (E) plus the
condition of null flux:

2a
fAu-dx=1im U 10=0
ar

= Jo
and prove the following result (see Theorem 2.1):

MalN ResuLt. Let B(R) C (0,). For every f € L'(R®) such that [ f > 0 there
exists a unique u € WELL(R?) with |gradu|€ M’(R’),” Au€L'(R?) and
[ Au - dx =0 such that Au + f € B(u) a.e. if and only if B satisfies the following
condition of integrability at — «:

There exists a €R with (—,a)C D(B) and
(B2)
f B(t)exp(— bt)dt <o for every b >0.

N =3. We prove a negative result in case 8(R) 2 0: Under mild (and natural)

t Me(RY) = L(p,»), 1 < p <, denotes the Marcinkiewicz space or weak-L? space, see appendix
of [2].



Vol. 43, 1982 LAPLACIAN IN L'(RV) 257

conditions on u no solution of (E) can exist such that B°%u) € L'(R")
(Proposition 4.1).

N = 1. [2] and [6] already contain the basic results.

It turns out that the situation is very similar when N =1 and 2 and, on the
other hand, for all N = 3. For that reason our work owes much in motivation and
techniques to [6] and, of course, to [2].

The plan is as follows: we collect some preliminary results and notation and
formulate the problem in Section 1. In Section 2 we consider the case N =2,
B(R)C (0,%). In Section 3 we present a general discussion for N =1 and 2.
N =3 is treated in Section 4. We conclude with a technical appendix.

1. Preliminaries

We begin with some basic definitions and notation. Given 8 a m.m.g. in R and
f € L'(R") we say that u € L,.(R") is a solution of the equation (E): —Au +
Bw)Sf, if Au € L'(R"), in the sense of distributions and w =Au +f € B(u)
a.e. In order to obtain a well-posed problem (P)=(P,), a condition on
the behaviour of the solutions at infinity must be added in general. Then a
subspace & of Li.(RY) is considered where the solutions of (P) are to be
found. (¥ contains, in general, the conditions at infinity.) We define the
solution maps G =Gs:L'RY)— 2, G(f)=u solution of (Pgs)" and T =
T, : L'RY)—>L'R"Y), T¢f)=w=Au+f with domain D(G)=D(T)=
{fEL'R"):(Psy) admits a solution in £}.

We say that (P) is well-posed from V C L'(R") into & if

O DG)=V (Existence)

(II) T is single-valued (Uniqueness)

({0 [(Tf =T =f(f—f) for f,fEL'®RY) (Continuous Dependence)

If V=L"(R") we simply say that (P) is well-posed in &, in accordance with
[2]. A solution of (P) will be a solution of (E) in the class £.

We follow, in general, notations in [2]. In particular we set

No={j : R—[0,): j convex, lower semi-continuous, j(0) = 0},
B ={p € C'(R)N L*(R): p nondecreasing},
Bo={pEB:p(0)=0}, B.={peP:pz20}
We write [u > a] for {x ER" : u(x)>a} and so on. If QCR" is measurable
' If B is multivalued and s € D(B), B°(s) is the element in B(s) of minimal absolute value (see

[4]). For a function it is simply B(s).
* Note that G is not necessarily single-valued.
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|Q| = msQ is its (Lebesgue) measure. by is the volume of the unit ball B,(0) in
R™, ony = Nby the N —1 dim. measure of the sphere S,(0). We shall use the
fundamental solutions of — A in R" (see [2], appendix): if N =3,

Ex(x)=[(N=2)bx]"[x™™; Eax)= —@Qm)'Iglx|, Eix)=-}x].

We consider several types of convergence at infinity, i.e. as |x|—®, for
functions u = u(x) defined on R":

(i) we say that u converges to a €ER in measure, u(x)— a (m), if for every
£ >0, ms[|a —u|> g]is finite. u(x)—> % (m)if for every a ER, ms[u < a] <.
Similarly u — — (m).

(i)) We say that u € L,,.(R") tends to a at infinity in absolute integral mean,
u—>a (aim.) if

.1 _
(1.1) lim |BR|LR |u(x)—aldx =0

R

or equivalently if

(1.2) lim lu(nx)—a|dx =0.
n—® Jigix(=2
(This formulation is used in [2], appendix.)
(iii) lim,..u = a in integral mean (i.m.) if

(1.3) lim

1 -
Bl u(x)dx = a.

Corresponding definitions hold for |u|—® or u —* (i.m.). Functions in
LP(R"), 1=p<» or in M?(R"), 1<p < tend to zero at infinity (m) and
(a.i.m.).

(iv) For N=2 and u €L (RY) we define the angular mean of u,
i:]0,o[ >R, i@(r)=|on|" [oes, u(ra)do where do is the surface measure on
S:. u converges to a €R at infinity in angular mean if lim,... i (r) = a.

2. N=2,BR)C(0,»)

In this section (E): —Au + B(u)>f is studied for N =2 and B a positive-
valued m.m.g. We begin by discussing the functional setting in which (E)
becomes a well-posed problem.

First, if u €Li.(R? is a solution of (E), then lim,, .B8(s)=0 and
lim,_. u{x) = — in measure. This is a consequence of w =Au + f € B(u) a.e.
and w € L'(R"™). Hence we assume hereafter that S(—)=0.
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Also if u € WiL(RY) with Au € L .(R") it is easy to prove that & € C'(]0, «[)
and

Q1) 2mri'(r)= rc—;i— (1 f u(x)da) =| Au-dy, forae r>0
T \T' Jix|=r fxt=r

(see e.g. [12]). As Au = f — w, we have lim, rii'(r) = [e2(f — W), as r = =, so that

Jf=Jw if and only if lim,... r#'(r) = 0. This was precisely the situation in case

0€ B(0)NInt B(R) (theorem 3.1 of [2]).

In our case a condition at infinity must be specified. We select expression (2.1)
and interpret it as the flux emerging through | x| = R by virtue of the following
argument: if u € Wi(R?) with Au € Li(RY) then on a.. sphere Sz =
[[x|=R], ou/dr € L'(Sk) and

f Au-dx = f ou, do = flux of grad u through Sg.
x|SR (xl=r OF

. We shall solve equation (E) plus the condition of “null flux at infinity”, a
homogeneous-Neumann-type condition. Thus we formulate

—Au+B(u)3f,

®) fAu -dx =0,

We remark that a condition of positive flux at infinity would not be compatible
with our problem in general. In fact we have

ProposITION 2.1. Let u € Li.(R) be any function with Au € L'(R). If a
section w of B(u) is integrable and either (i) D(B) is bounded above or D(B) =R
and liminf,_.. 8(r)/r > 0 or (ii) | grad u | € M*(R®), then necessarily [ Au - dx =0.

PrROOF. Observe first that [ Au >0 means lim,\_.‘,° ri'(r)>0 and this implies
lim, . @(r)= + oo,

If liminf,..B(r)/r >0, there exist ¢,>0 and c,;ER such that w(x)=
¢ u(x)+cz a.e. Thus w(r)= c,ii(r) + c,, which contradicts w € L'(R?). The case
D(B) bounded above is even simpler: i —  contradicts u(x) € D(B) a.e.

If |grad u | € M*(R?) we prove that u — —  in integral mean, a contradiction
with @(r)— +: in fact since u € L}..(R%), |grad u| € M*(R*) and ms [u > A]<
« for all A ER (for u — ~ in measure) then

(2.2 j (u—2r) =Clgradullyzms[u > A]
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where C is independent of u and A (see lemma 5.9, [2]).
Hence

f ugf (u—A)+A|Br|=Cllgrad u|mems[u > A]+ A | Bg|.
Bg RrR?

Letting A — — o we conclude that | Bz | [s, u(x)dx > —®as R >, #

CoroLLARY 2.1. IffEL'(R? and [f =0, (E;) cannot have a solution if (i)
or (ii) of Proposition 2.1 holds.

Proor. If u is a solution and w = Au + f € B(u) a.e., since w(x)>0 a.e.,
J w>0. Therefore [ Au > 0. #

Condition (i) is quoted in [2] to conclude the non-existence of solutions if
Jf <0. There the problem of finding solutions for f such that [ f >0 is posed,
thus motivating our work.

We comment now on the appearance of condition |grad u| € M*R?) for
solutions of (E). First, if u € Wi;i(R?) is a radial function and Au € L'(R?) then
(2.1) implies that ru’(r) is bounded (we write u = u(r), with r =|x|>0) and thus
|u'(r)| = |grad u | € M*[R?) (see lemma A.3, [2]). More generally if u € WiL(R?),
Au € L'(R?) then |grad u | € M*(R?) is equivalent to grad u —0 in a.m. (lemma
A.11, [2]) and this is the case if, for instance, u € L?(R"), 1 = p = (lemmas
A.14, A.15, [2)).

In particular, |grad u | € M*(R?) for the solutions of [2]. We are going to obtain
solutions for (P) as limits of those of [2] and the condition will hold in the limit.

The previous discussion leads us to pose our problem from V =L (R*)=
{f€ L'R"): [ f >0} into the class

L= {u € WEL(R?): |grad u| € M*(R?), Au € L'(R?), j Au =O} .

Define L'(R%),, the set of integrable radial functions on R?, as the completion
of C'(R%, in L'-norm. For f € L1(R?), we shall consider radial solutions, i.e.
ue: =L, (R) N ucl if and only if it is representable as u(r)€
C'(10, [) with (d/dr)(rdu/dr) & L'(0,») and lim,_..ru'(r)=0.

The next theorem is our main result stated in full detail:

THEOREM 2.1. The following properties are equivalent :
(1) There is an a €R for which (—»,a)C D(B) and

a (condition B,).
j B(t)e™dt <  for every b >0
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(ii) There exists some f € L'(R?), for which (P;) admits a radial solution.
(i) (P) is well-posed from L(R®) into L.

PrROOF. We shall proceed in this order: (1) < (ii), (ii) < (iii), as in [6].

(ii) = (i): Let u €L, be a solution of (P;) and set w = Au +f. As ru’(r)—>0
when r—, for every £ >0 there exist C €R and r,>0 such that if r >r,

T

u(r)= u(ro)+J w'(rdrzu(ro)—elg(r/r)=C—¢lgr.

(]

Then

oo>fm w(r)rdréfm BUC ~¢lgr)rdr =K[o B(t)exp(—2t/e)dt

0

with t=C—¢lgr, to=C—¢elgr,, K=(1/e)exp(2C/e)>0. As ¢ is arbitrary
>0, condition (B;) follows.

(i) > (ii): Assume that a continuous differentiable function g : (—«,0)—R is
given such that

(2.3) g1, g is decreasing, sl_i)rgc g(s)=oo.
Define u by
d 1
glu)ys-=—-=, ifr>1,
(24) dr r
u(l)=0

If geC* k=0, (24) has a unique solution u € C**' defined in (1,) by
G(u):=Jsg(s)ds = —lgr. u is decreasing, ru’(r) is negative and increasing.
Also lim, . u(r)= —, for if on the contrary u(r)=zC> —« for r>1 we
should have g(u)= g(C) and
' T ds 1
1—ur=I— ! dzf——=——-lr
WU =) THEE 2 | (6 T80 8
so that u(r)— —=. As we have assumed lim,_. .. g(s) = = it follows from (2.4)
that lim, ... ru'(r)=0. As ru' is increasing Au(x)=(1/r)(ru'Y =0 a.e. and we
conclude that Au € L'(|x |> 1) (interpret u = u(r) as a radial function in R?).
Set w(r) = B*(u(r)) for r =1. We have for [j ;1 w:
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J; . w(x)dx = 271-]:: w(ryrdr = 21rf B(u(r)yrdr = 211']_0 Bo(u)g(u)r(u)du

= {since r = exp(— G(u))} 27r£ B°(w)g(u)exp(—2G(u))du = (*).

We shall find a g satisfying (2.3) and such that () is finite. Then continuing u
smoothly and radially to all of R? u will be a radial solution of (Py) if we set
fi=—Au+w.

To build such a g take a sequence {a.} with a,<a,.,<0 and
Je« B(t)exp(—4Vnt)dt < n~. Take now g satisfying (2.3) and such that g(a,) =
Vn. Then — G(u) = fSg(s)ds = g(a.)|u|=Vn|u| if a. <u <0 and

fx B°(u)g(u)exp(—2G(u))du
-3

a

" BUwgexp(~26(du+ [ BUgexp(~2G(w)du

Qn sl

=finite+ Y, Vn +1 - B(u)exp(2Vnu)du

A +1

<finite + 2, V'n + 1/n> = finite. #

It remains to prove (ii) & (iii). We arrange the proof of this more difficult part
in a series of lemmas, obtaining at the same time the main properties of the
solutions.

LemMma 2.1. If we can solve (P) in &, for a radial f with [ f >0, we can solve
(P) in &, for a radial f with [ f arbitrarily small (and positive).

Proor. Let u €L, be a solution of (P;), f € LL(R?),. Set u. = u — ¢ for ¢ >0.
Then u. € &,, Au, = Au so that fAu. =0. Set w. = B°u.): {w.} is a monotone
sequence, w, —0 a.e. as ¢ >, hence w.—>0 in L'(R®). Put f. = — Au. + w.,
f. ELV(R?..Asc—>», ff. | 0. #

Now we consider the process by which solutions are going to be obtained for
general f € L1(R®). The idea is to replace (P) by an approximate problem (P)* by
modifying B in such a manner that [2] applies:

For each A : 0< A <sup B(R) take r, € D(B)such that A € B(r.). Set B*(s) =
B(s +rn)—A. Then 0€ B*(0)NInt B*(R) so that [2], theorem 3.1 solves the
problem

¢y —Av, +B*(0)3f
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in the class . Set u, = v, +r,. We want to find a solution u for (Pg) as the limit
of u, as A | 0. In that direction we have

LemMMA 22. As A |0 the sequences {u,} and {W,}, where W, =
f+ A +Au, € B(w), are nonincreasing.

Proor. Take O<A<mn. Then -—o<n=r, Au —u,)=W,—-W,

n
+(m—-A)and v =v, —v, = u, —u, ~ (. —r,) ELX. Lemma A.13 [2] implies that
for any p €

(2.5) fAv -p(v)+f |grad v P p'(v) =0,

j [Wi =W, =2 = )lp(0s —vn)+f | grad(vs — v,)p'(0x —v,)=0.

Now choose ¢ € with ¢(s)=0 for s =0, ¢'(s)>0 for s >0 and put
p(s)=¢(s +n —r,). Then

[ =W, 40 =000 = )+ [ lgradtan - )/ = ) =0

From the nonnegativity of (W, — W,)¢(u, —u,) and n > A we conclude that
w=u, ae.

If B is continuous we conclude from W, € B(u,), W, € B(u,) that W, = W,
a.e. In general this argument only gives W, = W, a.e. on [u, <u,]. To get
W, =W, ae. on [u, =u,] we apply Kato’s inequality [9] to u, — u,:

Au, — u)" Zsignd(u, —u,) - A(u, — ).’
Since (u, —u,)* = (u,, — w,) we have a.e. on [u, = u,] that A(u, — u,) =0. #

Lemma 2.3. If (P;) has a solution u €L and w = Au +f, then u, | u and
W, | w a.e. Thus u and w are unique. For j €S,

[ im=] ig)
Also if 4, W correspond to f
[ov—sr=[g-pr
and

lgrad(u — &)le= Cllf = flh, ~ fora C>0.

signg(s)=0if s =0, signi(s)=1if s>0.
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Proor. Set v =u —u,. Formula (2.5) is valid for p €%, since we have
v € WEL(R?), |grad v | € M*(R?), Av € L'(R?) and ms[v > k] < for k >0 (but
ms[v < — k] is infinite). We conclude that u, =Zu a.e. and W, =Zw a.e. as
before. In the limit we obtain u.=limu, = u a.e. Since ||[Vu, s = C||f]; we
conclude that grad u, — grad u.. weakly in [Li.(R)J and that [grad u.j=
CIfll: I- lm= is Ls. continuous under weak L }.-limits).

Set w, = W, — A € B*(v,). From [2], p. 527, we conclude that {w, } is relatively
compact in LL.(R?) and | w, | =||f . Therefore there exists w.. = lim, ;o Wy, limit
in LL,:(R? and a.e., and ||w.|, =|f]l.. Also W, =w, + A = w. in L}.(R?). We
conclude that W, | w.. = w. Passing to the limit in (P)* we obtain —Au.+ w. =
f. As u, > u. a.e. and W, > w.. in L.(R?) we have w.. € B(u.).

We prove next that [ Au. =0: Since u €&, [ Au =0, lim,..ru'(r) =0, i.e. for
every £ >0 there exists C, R such that #(r)= C — ¢ lgrforr > R. As u.= u we
have limr_... rit.(r) = 0. But Proposition 2.1 implies that lim rii«(r) =0, so finally
J Au..=0. Thus u. is another solution of (P) and u..= u. Also we have w.= w;
as fAu=fAu.=0, [f=fw=[w., hence w=w. a.e. Finally if 0 =u.—u
then v €L, 5 =0 and AG =0. It is easy to see (cf. [2], p. 533) that § must be
constant, u.=u +c. We have the following situation: u € W;2(R*) for some
1<p<2, wx)EBuEX)NBu(x)+c) ae, weL'(R?. The proof of [2],
lemma 3.5, applies to imply that either w = 0 (impossible) or C = 0. Thus u. = u.

The final statements of the lemma are a consequence of the passage to the
limit for they are valid for the solutions of [2], when 0 € 8(0) N Int B(R). #

In particular, since (E) is invariant under rotations and solutions are unique,
every possible solution of (P;) for f radial must be radial. This implies the easy
step (iii) = (ii) in the Theorem.

Next we use the approximations (P)* to prove (ii) = (iii).

LeEMMA 2.4. If (ii) holds and f € L .(R?) there exists a solution u of (E) with
|grad u | € M*(R?).

PrOOF. Solve (P;)* as in Lemma 2.3 and try to pass to the limit as A | 0. As
{u,} is nonincreasing we shall get a limit if we bound the sequence below. For
that we use (ii): using Lemma 2.1 we take a radial g € L'(R*) with ff> fg >0
and such that (P,) is solvable in £,. We set

(2.6)

—Au, +B()— A D, Wi =f+ A +Au,
—Al, +B(L)—A3g W, =g+A+AG,.

We use inequality (2.5) with v = ii, —u, and p €., p(s) =1for s >0. Then
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O.S.f (W, — W,)p(i —uA)+f p'(f — w)|grad(, —u,)f?
@7
< [ @~ Npti — )

As i, converges a.e. to the solution & of (P,), that is finite a.e., if lim, jou, <1
a.e. the Dominated Convergence Theorem implies that f (g — f) = 0; false. Thus
we have u =1lim, ;o 4, = & on a set of positive measure. Since u, is nonincreas-
ing as A | O there is a k such that for every large R >0, ms{[|u, | < k] N Br (0)}
is greater than O uniformly in A. Also {gradu,} is uniformly bounded in
M?-norm, so that lemma A.16 [2] implies that {w,} is bounded in Li.(R?) for
p*=p/2-p), 1<p <2, and its limit u € LE(R?).

Now repeat the argument of Lemma 2.3 to show that u is a solution. #

If we show that the solution of (E) found in Lemma 2.4 satisfies f Au =0 the
proof of (ii) = (iii) will be complete. Recall that Proposition 2.1 implies that
JAu =0.

LEmMMA 2.5. If (ii) holds then (P;) is solvable in £, for every radial f € L1(R?).

Proor. If v €R, and p € P it is trivial to show that rp’(v(r))v'(r)’ € L'(0,®)
and

e® [ ey [ p@perr = -pemn)
(compare with (2.5)). Apply (2.8) to v = is, —u, of (2.6) to get
f(vk — W )p(l — wy)rdr +f'°°p'(m ) (@ — wyrdr + p s — w)r (@~ )
= [ Ir-glrar
So
r(as—u)p(l —w)= f'm |f —g|rdr.

As [r(u;—u})]' converges in L.(0,%) (A(fh —u,) converges in Li.(R?) and
r(ii;— u}) is uniformly bounded in A and r, we have r(d;—u)—>r(i’'—u') a.e.
and

2.9) r(ﬁ’—u’)p(ﬁ—u)éJ:wlf—glrdr—-)O as r— o,
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Assume now that [Au = ¢, <0. Then lim,_.ru'(r)= ¢, <0 so that u(r)~
¢, lgr for all large r. Since [ Aéi =0, rit'(r)— 0 as r — o, so that lim, ... &(r)/lgr =
0 and & — u >0 for all large r. Taking in (2.9) p €, with p(s) =1 for s =20 and
letting r — o we conclude that lim r(@’ — u') = 0, contradicting the assumption.

#

Another step is provided by

LemMA 2.6. If (i) holds then (P;) is solvable in L for every f € L (R?) with
compact support in R,

PrOOF. Suppose that supp (f) C Bg (0). By Lemma 2.4 we obtain lim, (o 4y =
u € WLIRY. In[| x| > R] we have Au, € B(u,)— A, Au € B(u). The argument
in [2], p. 542, shows that u, € Li.(|x|>R). Also, it can be shown that
v, = U, — r, tends to zero uniformly as |x |—> at any A such that 87'(A) ={n}
(see for instance [12], lemma 4). Thus for such A and R, large, W, € B(u,) is
bounded in [|x|>R,]. As W, is nonincreasing in A and W, =0, we have
w =lim W, €L[|x|>R,] and as in [2] we conclude that u € C'(|x|>R).
Take Ro,> R, and C such that u(x)> C for |x| = R,.

We build now a radial comparison function v €£,, v = C on [|x|= R,] and
such that —Av+B8(v)Dg for a gEL'[|x|>R,], g=0. In fact if § is an
integrable radial function with support in Bg(0) and & is the solution of (P, ), put
v = & —k, k a sufficiently large constant. Compare now u and v in [|x|> Ro] to
conclude that u = v. As lim,.rv'(r)=0 we have [Au =lim,.ri'(r)=0. (To
compare u and v begin by comparing u, and v, as in 2], then pass to the
limit.) #

LemMa 2.7. If f.—f in LY(R?) and (P;,) is solvable, then (P;) is solvable.

PrOOF. Set

—Aui+BUN—A3Df., wi=Auitf,
{ —Au"+Bu")3df, w'=Au"+f.;
—Au, +Bu)—A3f, wy = Au, +f,

{—Au +B(u)3f, w=Au+f (asin Lemma 2.4).

We have [wi=[f,=fw" Also |wi—w,|i=|f = f. |- But wi—w, > w"—w
in LL(R? and a.e. By Fatou we have |[w" —w |, Z|f - f. [

U‘”’f <[ lw-wels fW"—f»’+flfn—flézllfn—ful»o
as n —_ Therefore fw =[f, fAu=0. 4
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Thus the proof of (i) = (iii) and of the Theorem is complete. We record the
main properties of the solutions of (P):

ProrosiTiON 2.2. The following holds for the solutions of (P) in the class £:

(i) G :fw uis a single-valued order preserving map from L'.(R?) into W ;2(R?),
1=p <2. Every solution u € & converges to — « at infinity in measure, in integral
mean and in angular mean. G is bounded on any weakly relatively compact subset
of LyR)={fEL'R*):ff=a}, a>0, and hence it is weakly sequentially
continuous.

(i) T:f— wis an ordered contraction of L.(R?) invariant under rotations and
translations.

(i) If j €EIo and f ELLR?), w = Tf:

[im=] i

In particular |wll, =|Ifl,, 1=p <o, supw Ssupf.
(iv) There is a constant C < ||grad E,||s> such that

| grad(u — @)|ve = C|If - flh-

Proor. Most of the properties are consequences of theorem 3.1, [2] after
passing to the limit. The convergence of u is a consequence of Lemma 2.8 to
follow. Let us prove the boundedness of G: Let F be a subset of L1(R?) such
that, uniformly in f €EF, (i) [f = a, (ii) there exists a constant C, such that
JIf|= G, (iii) for every £ >0 there exists a compact K C R® such that [ee_« |f| <
g, (iv) for every € >0 there exists & > 0 such that if Q C R* and ms(Q) < § then
Jalfl<e.

We repeat the proof of Lemma 2.6. Letting A { 0 and p(s)— signs(s)™ we
obtain from (2.7) with u = u;

L,», (f-g)= f[m] (f-8).

If fEF and f|g|<a/3, we conclude that [, z.f>a/3. This implies that
ms[u, Zv]=8 for a certain §>0. On the other hand ms[u; > A]=
B°(A)' fw; = B°(A)'|If|l,. Thus on any sufficiently large ball B there exists
A >0 such that ms[|u;|>A]=0>0, o independent of f EF. Then lemma
A.16 [2] implies that {1} is bounded in L{(R?), p* <. #

LeEmMa 2.8. Let B8 be a m.m. graph such that B(s)>0 for s >a, a €R. Let

"infw =0.
" signg(s)=1if s>0,0if s =0,-1if s <0.
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u €L be a solution of —Au+Bu)>3f, fEL'(R?). Then limsupu =a in
measure, in integral mean and in angular mean, as |x|—> .

Proor. If w=Au+fEL'(R?), weEB(u) ae. it is immediate that
limsup,_..u =a (m), i.e. ms[u>A]<xif A >a.
For the convergence in mean apply (2.2) for A > a:

j |u|§f (=AY + A | Bx | = Cllgrad u [y ms[u > A] + A | Ba |.
Bg Bg

We conclude that limsupg...| Bz |™ s, u(x)dx =< a.

For the angular convergence, suppose that limsup,_..#(r)=b >a. Take a
sequence {r,} with r,.,=2r, and i(r,)=b—¢ for an g, b—a >2>0. As
ri’(r)—0 take n(e) such that for n Zn(e) and r = r,, [ri'(r)| = £ Now for
. =r=r.,/e we have for ¢ small enough

la(r)—a(r)|= f" [u'(r)|dr = e2lg(r/r.)=e?lgle|<e
thus u(r)> b —2¢. But now ”
fm;lxlsme] u(x)dx = (b —Zs)ms[r;. =lx|=rn/e)
This contradicts lim supg—...| Br | [, u = a. #

3. N=1,2. A general discussion

N =2. We discuss here the two-dimensional problem
(Psr) —~Au+B(u)3f, fAu=O.

We seek solutions for f& L'(R?) in £ ={u € WLL(R?):|grad u| € M*(R?),
J Au = 0}. Several cases occur:

Case 1. 0E€IntB(R)

By translation we may consider that 0 € 8(0) N Int B(R) as in [2]. Theorem
3.1, [2] says that (P) is well-posed in & ={u € WLI(R?),|grad u | € M*(R?)}.
JAu =0 comes as a consequence of w € L'(R?), w € 8(u) a.e. Thus (P) is
well-posed in L.

Case 2. 0ZB(R)
Consider only the case B(R)C (0,%). This is our Section 2. (P) is well-posed
from Li(R?) into  if and only if B satisfies condition (B,) at ~ .
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Case 3. B=0

As T:f—w is the zero map, (P) degenerates from our point of view.
— Au = f has solution (determined up to a constant) in BMO(R?), the space of
functions of bounded mean oscillation. If f f = 0 they belong to £ by virtue of

LemMa 3.1. Let N=2, u € Wii(R"), Au € L'(R") and gradu(x)—0 in
absolute integral mean as x — ». Then u = Ey *(— Au)+ ¢ for a certainc €R.

Proor. If N=3 we have the convolution L'(RY)*xM"®™IRN)—
MMNON-DRN),  see  appendix  [2]. For N=2 we  have
L'(RV)* BMO(R?)— BMO(R?). See Appendix at the end of this work.

Thus set i@ =(—Au)*Ey. Then |gradad|€M™™YRN). Put v =
(@/x)(u—a)fori=1,--+,N: v; € Li.o(R") and lim,_.. v; =0 (a.i.m.). Lemma
A.8, [2] implies that v; =0, hence u =i +c. #

Thus (P) is well-posed from {f € L'(R?): [f =0} into L.

Case 4. B non-positive or non-negative and 0 € 8(0)

Consider, for instance, 8(R)C [0,%) and B87'(0) = (—,b], b €R. Then

(i) ff>0. Theorem 2.1 and Proposition 2.2 apply with minor changes; now
we get limsup,..d(r)=<b. If f=0 ae., f#0 then u=b a.e. Solutions are
unique.

(i) ff<0. No solution exists (see Corollary 2.1).

(i) If ff =0, necessarily w = Au +f =0 a.e. for any solution (fw =[f =0
and w = 0). Thus we are reduced to solve — Au = f with u € £ (case 3) and also
u bounded above. This last condition is fulfilled if f € L?(R?), 1 <p =, f has
compact support (and [ f =0): then f* E, is a continuous solution of (P) that
converges to zero at ® (uniformly, u(x)= O(|x|™)). On the other hand take
fEL'R?,, [f=0 and f(x)=(rlg(l/r))? for all r=|x| small. Then u is
equivalent near 0 to Ig(—1gr), so that u(0)= +x.

(P) is well-posed from a V, L')(R*)C V C{f € L'(R?); [ f =0} into L. (For the
well-posedness use the Lemma 2.3.)

N =1. Here

(Pey) -u"+BW)df u(xw)=0.

We take & ={u € C'(R): u’(£ ) =0}. The same cases as in N =2 apply and
similar phenomena occur. Case 1 is dealt with in [2]: (P) is well-posed in £. Case
2 for positive 8 is Crandall and Evans’s [6]: (P) is well-posed from L .(R) into £ if
and only if B is integrable at — .
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Case 3, B=0 has the explicit solution u=c—x/* f(s)ds
+ [2f(s)ds + [ f(s)sds; u €L if and only if [ f =0 and case 4 goes asin N = 2:
thus if 8 =0 and [ f =0 we are reduced to solve —u" = f with u € £ bounded
above. As u € C'(R) non-boundedness can occur only at . For instance, if f has
compact support, u is constant outside supp(f) and (Py) is solvable. On the
contrary, if f € L'(R), f f =0 and f(x) = x* for large x, u(x) is equivalent to Ig x
as |x|— o and (P;) is not solvable.

4. N=z3

The situation is quite different in dimensions N = 3. Thus it is shown in [1] that
we can impose the condition [ Au = 0 on the solutions of [2] only if 8 satisfies

r
: S2N-DIN=2) Jp —
l'1mJ; B(n)r] dr =,

On the other hand, [2] shows solutions in M™®~?(R"), hence they converge
to 0 (a.im.). In fact lemma A.5 [2] says that for a u € Li..(R"), N =3 with
Au € L'(RV), lim,_..u =0 (a.i.m.) if and only if u = Ey *(—Au) and hence
u € MM™-(RNY and |grad u | € MYV YRY).

Set 8={u€LLM®R"):|gradu|€e MV™ R")} and L ={u € WiLR"):
u—c € MVN-RM)}, &, C L. Bénilan and Brézis [1] have studied (P) = (E) in
case B(R)DO0. If B'(0)={a}, (P) is well-posed in 2 and Z,. But if B7'(0) =
[a,b), —®=a=b=w, (P) is well-posed in L. for every ¢ €B7'(0); (P) is
well-posed in R only if B =0. Every solution in £ belongs to an £..

If 0 € B(R) we show a negative result: A reasonable well-posed problem is not
possible as a consequence of the following

PROPOSITION 4.1. Let u € WL(RY) with grad u —0 (a.i.m.) [in particular if
lgradu| € MM™DRY)] and Au € L'(R") and let B be a m.m.g. such that
B(R)C (0,»). Then B°(u) is not integrable on R".

Proor. Under the conditions of the proposition, Lemma 3.1 implies that
u=Ey*(—Au)+c for a certain ¢ ER. Thus lim,..u% =c¢ in measure. But
B%u)E L'(R") and B(R)C (0,) imply that u — — in measure, a contradic-
tion. #

Proposition 4.1 excludes, for instance, the possibility of any radial solution,
for if u = u(r)is a radial solution, u € C'(0,%) and u'(r)r™" is bounded. But this
implies |gradu|=|u'(r)| € M¥™-Y(R") (see lemma A.3 [2]).



Vol. 43, 1982 LAPLACIAN IN L}(RF) 271

Appendix

We collect here a series of results, some of them well-known, related to the
solution of —Au = f € L'(R?). We thank R. Moriyon for valuable advice.

LEMMA A.l. The convolution (f,g) v f * g is a continuous bilinear mapping
H'RY)x L'(RY)— H'(R"), where N =1 and H' denotes the Hardy space.

Proor. Let R;,j =1, -, N, be the Riesz transforms, R; : L' — ¥’ (the space
of tempered distributions) defined by

Rf(§)= ,fL, i),

where * denotes Fourier transform. Since H'(RY)={f€&€L'(R"):
R(f)EL'R"), j=1,---,N} is normed by [f[w =|fllc:+ = | Rif .+ and
Ri(f*g)=Rf+g in & (check the Fourier transforms), we deduce for f €
H'(RY), g € L'(R") that

1f gl < Ifllsr - g e #

We recall that the members of the space BMO(R") of “functions of bounded
mean oscillation” are classes of functions up to an arbitrary additive constant.
Denote by [f] the class of f. We have

LEmMMAa A.2. There is a continuous bilinear mapping BMO X L' %, BMO. For
[f1€ BMO(R"), g € Li(R") (integrable with compact support), % is ordinary
convolution (except for a constant). If g, € L; and g, — g in L'(R")

f¥g(x)= !.11,2 LN f(t)g. (x — t)dt (limit in BMO).

ProoF. Since BMO(RY) is the dual of H'(R"), we define * by adjointness:
for [f] € BMO(R"), g € L'(R"), h € H'(R") the following formula must hold:

([f ® g], h)emoxut = ([f], g% R)smox

where g(s) = g(—s). So we have immediately

I % g llamo = I llamo - 18 -

If g € LYR"), the integral f*g(x)=[f(t)g(x —t)dt converges a.e. and
belongs to L}..(R™). By checking on the atoms of H'(R™) (compactly supported
and bounded generators of H', see [11]) we conclude that [f * g] = [f * g]. For
the final statement we use the continuity of *. #



272 J. L. VAZQUEZ Isr. J. Math.

Lemma A3. If [f]€BMORY), Vfe M?(RY) and g&L'(R"). Then
V(g *f)=g+*VfEM"(R").

ProoF. Take first g € Ly(R"); the verification is immediate. For general
gEL'R"),if g.—ginL' then f%g,—f*%ginBMO and Vf* g, -»Vf*gin
LL.(RY) (for the convolution M? x L'— M?, see [2]). Thus we obtain the
following

PrOPOSITION A.1. Forevery g € L'(R®) there is a unique solution of —Au =g
in ©'(R?) in the class {u € L..(R"):|grad u| € M*(R*)} except for an arbitrary
additive constant. It is given by

U= lg & g € BMOR?)

-1
27 °x]

and then

gradu = _2_771l—x_l * g € M*(R?).

Proor. Existence follows from the lemmas. Uniqueness was proved in
Lemma 3.1. #
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