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MONOTONE PERTURBATIONS 
OF THE LAPLACIAN IN L I(RN) 

BY 

JUAN LUIS V,~ZQUEZ 

ABSTRACT 

The semilinear perturbation of Poisson's equation (E): - Au +/3 (u) ~ ]', where 
/3 is a maximal monotone graph in R, has been investigated by Ph. B6nilan, H. 
Br6zis and M. Crandall for f ~ LI(RN), N _-> 1, under the assumptions 0 E/3(0) 
if N_-3  and 0E/3(0)AInt /3(R)  if N = 1 , 2 .  We discuss in this paper the 
solvability and well-posedness of (E) in terms of anymaximal monotone graph 
/3. In particular, if /3 takes only positive values and N _-> 3 we prove that no 
solution exists; if N = 2 we give necessary and sufficient conditions on/3 and f 
for (E) to be solvable in a natural sense. 

Introduction 

This paper deals with the following nonlinear perturbation of Poisson's 
equation in R N, N => 1: 

(E) = (E~,r,N) - A u  + f 

where/3 is a maximal monotone graph in R (m.m.g. for short; see e.g. Br6zis [4]). 
In particular you can assume throughout that/3 is a continuous, nondecreasing 

function on R and write (E) as an equality. The function f will belong to LI(RN). 
In case 0 E/3 (0) if N => 3 or 0 E/3 (0) f) Int/3 (R) if N = 1, 2 we owe B6nilan, 

Br6zis and Crandall [2] a detailed study of (E): for every f ~ L I(R N) they obtain 

a solution u ~ W~g(R ~) such that w = Au + f  E/3(u) a.e.* is integrable. If u is 
chosen in the appropriate class (see discussion to follow) w is uniquely 
determined and the map T:f---~ w is an ordered contraction in L~(RN); we say 

that the operator A = - A o / 3 - !  (defined by A w  = - A u )  is m-accretive in 

LI(RN). This is an important property for then A generates a semigroup of 

contractions in L~(R t~) that enables us to solve the evolution equation 

* w =/3(u)  if/3 is a function. 
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{ u,-A/3-1(u)=O in RN • T[ 

(Pov) u(0, x) = Uo(X) ~ LI(R N) 

via discretization in time (Crandall-Liggett's Theorem, see [5], [7]). 
In [6] Crandall and Evans consider equation (E) in dimension N = 1 for/3 a 

m.m.g, such that /3(R)C (0,oo), imposing conditions at infinity u'(___oo)=0. 

Attention to this case had been drawn by T. Kurtz [10] in the particular form 

e" - u" = f, u'( --- oo) = 0. Crandall and Evans show that the problem is solvable 

only if/3 is integrable at -oo and in that case A is accretive and R (I + A ) =  

LI(R)  = {f E L1 (R) : f f  > 0} = D ( A )  so that (P~v) may be solved as hinted above 

for initial data uo E L ~+(R). 
B6nilan and Br6zis [1] consider (E) for non-negative /3, /3(R)9 0, in N _-> 3 

when studying the Thomas-Fermi equation. 
S. Fisher considers in [8] a more general situation where /3 is a continuous 

function, not necessarily monotone (N = 1). 
Our concern in this paper is to complete the discussion of equation (E) under 

suitable conditions at infinity (if any needed) in terms of all possible m.m.g./3 

and for f ~ LI(RN), N => 1: 
N = 2. The main novelty appears when /3 takes on only positive (or only 

negative) values. We then pose the problem consisting of equation (E) plus the 

condition of null flux: 

f f2~ Ou 
Au . dx = !im Jo -~r rdO = 0 

and prove the following result (see Theorem 2.1): 

RESULT. Let/3(R) C (0, oo). For every f E LI(R 2) such that f f > 0 there 
exists a unique u E Wlg(R 2) with [grad u [ E M2(R2), * Au E LX(R:) and 

f Au .  dx = 0 such that Au + f E/3 (u) a.e. if and only if ~ satisfies the following 

condition of integrability at -oo: 

There exists a E R  with (-oo, a )C  D(/3) and 
(B2) 

-| /3( t )exp(-bt)dt  < ~  for every b >0. 

N = 3. We prove a negative result in case/3 (R) ~ 0: Under mild (and natural) 

t Ms  (R N) = L (p, oo), l < p < 0% denotes the Marcinkiewicz space or weak-L P space, see appendix 

of [21. 
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conditions on u no solution of (E) can exist such that /3~ 

(Proposition 4.1). 

N = 1. [2] and [6] already contain the basic results. 

It turns out that the situation is very similar when N = 1 and 2 and, on the 

other hand, for all N _-__ 3. For that reason our work owes much in motivation and 

techniques to [6] and, of course, to [2]. 

The plan is as follows: we collect some preliminary results and notation and 

formulate the problem in Section 1. In Section 2 we consider the case N = 2, 

/3(R) C (0,~). In Section 3 we present a general discussion for N = 1 and 2. 

N = 3 is treated in Section 4. We conclude with a technical appendix. 

1. P r e l i m i n a r i e s  

We begin with some basic definitions and notation. Given/3 a m.m.g, in R and 

[ ~ L I(R N) we say that u ~ L~oc(R ~) is a solution of the equation (E): - A u  + 

/3 ( u ) 9  f, if Au E L I(RN), in the sense of distributions and w -= Au + f E/3 (u) 

a.e. In order to obtain a well-posed problem (P)=  (Per), a condition on 

the behaviour of the solutions at infinity must be added in general. Then a 

subspace s of L~oc(R N) is considered where the solutions of (P) are to be 

found. (s contains, in general, the conditions at infinity.) We define the 

solution maps G = G~ :LI(RN)--->s G ( f ) =  u solution of (P~j)** and T =  

T~:LI(RN)--->LI(RN), T(f)=w--au+f with domain D ( G ) = D ( T ) =  

{f ~ L~(Rn) : (P~.f) admits a solution in s 

We say that (P) is well-posed from V C LI(R N) into s if 

(I) D ( G )  = V (Existence) 

(II) T is single-valued (Uniqueness) 

(III) f ( T f  - Tf)  § <= f (f  - f)+ for f, f ~ L ~(R N) (Continuous Dependence)  
If V = L~(R N) we simply say that (P) is well-posed in s in accordance with 

[2]. A solution of (P) will be a solution of (E) in the class s 

We follow, in general, notations in [2]. In particular we set 

~0 = {j : R--> [0, oo) : j  convex, lower semi-continuous, j(0) = 0}, 

= {p E CI(R) fq L =(R) :p  nondecreasing}, 

9~o = {p E ~ : p(O) = O}, ~+ = {p E ~ : p > O}. 

We write [u > a] for {x E R  N : u ( x ) >  a} a n d  so  on .  If I IC R N is measurable 

' If/3 is multivalued and s E D( f l ) , / 3~  is the element in/3(s) of minimal absolute value (see 
[4]). For a function it is simply /3(s). 

" Note that G is not necessarily single-valued. 
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Illl = m s ~  is its (Lebesgue) measure, bN is the volume of the unit ball BI(0) in 

R ~, ~oN = NbN the N -  1 dim. measure of the sphere $1(0). We shall use the 
fundamental solutions of - A  in R N (see [2], appendix): if N_-> 3, 

EN(x) = [(N--2)bN]-Ilxl2-N; E2(X)= - (2 r r ) - ' l g lx  ], E , ( x ) =  - ~21x I. 

We consider several types of convergence at infinity, i.e. as Ix I -+% for 

functions u = u(x)  defined on R~: 

(i) we say that u converges to a E R  in measure, u ( x ) - + a  (m), if for every 

e > O, ms [I a - u I > e ] is finite, u (x)--+ ~ (m) if for every a ~ R, ms [u < a ] < oo. 
Similarly u - - + -  oo (m). 

(ii) We say that u ~ Lloc(R ~) tends to a at infinity in absolute integral mean, 

u ~ a (a.i.m.) if 

(1.1) 

or equivalently if 

(1.2) 

e L 12m lu(x)-al x=O 
R 

!!m [ l u ( n x ) - a l d x = O .  

(This formulation is used in [2], appendix.) 

(iii) limx_~ u = a in integral mean (i.m.) if 

(1.3) lirn ~ u(x)dx  = a. 
R 

Corresponding definitions hold for lu I--' oo or u- - - , -  oo ( i .m. ) .  Functions in 

LP(RN), l=<p <oo or in MP(RN), l < p  <oo tend to zero at infinity (m) and 

(a.i.m.). 

(iv) For N=>2 and u~L~o~(R N) we define the angular mean of u, 

" ] 0 ,  OO[ ~ R ,  I-~ ( r )  = I o)N 1-1 fo'Est u (ro')do- where do- is the surface measure o n  

&. u converges to a E R  at infinity in angular mean if l im,o~t i ( r )= a. 

2. N = 2 ,  

In this section (E): - A u  + f l ( u ) D f  is studied for N = 2  and fl a positive- 

valued m.m.g. We begin by discussing the functional setting in which (E) 

becomes a well-posed problem. 

First, if u~L~o~(R ~) is a solution of (E), then lim . . . .  / 3 ( s ) = 0  and 

l imx~ u ( x ) =  -oo in measure. This is a consequence of w -= Au + f  E f l (u)  a.e. 

and w E LI(RN). Hence we assume hereafter that f l ( - ~ ) =  0. 
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Also if u ~ W~g(R N) with Au E L~o~(R N) it is easy to prove that fi E C1(]0, oo[) 

and 

d 
(2.1) 27rrfi'(r)=r~--rr(lI~l~, u(x)do,)=flx,~, Au .dx ,  f o r a . e . r > 0  

(see e.g. [12]). As Au = f - w, we have lim, rti'(r) = f~2 ( / -  w ), as r ---> 0% so that 

f f  = f w if and only if lim,__~ n i ' ( r )=  0. This was precisely the situation in case 

0 ~/3 (0)O Int/3(R) (theorem 3.1 of [2]). 

In our case a condition at infinity must be specified. We select expression (2.1) 

and interpret it as the flux emerging through Ix ] = R by virtue of the following 

WL~IR z~ with Au ~L/o~(R N) then on a.e. sphere SR = argument: if u E  ,o~ j 

[Ix I-- R], Ou/Or EL ' (S~)  and 

Ix au . dx =1 ~ I~R I=a ~r"  dcr = flux of grad u through SR. 

We shall solve equation (E) plus the condition of "null flux at infinity", a 

homogeneous-Neumann-type condition. Thus we formulate 

t 
- a u  

(P) ( j Au .  dx = O. 

We remark that a condition of positive flux at infinity would not be compatible 

with our problem in general. In fact we have 

PROPOSITION 2.1. Let u E LIo~(R) be any function with Au ELl (R) .  If a 
section w of/3 ( u ) is integrable and either (i) D (/3) is bounded above or D (/3) = R 
and lira inf,_,| (r)/r > 0 or (ii) ]grad u I ~ M2(R2), then necessarily f Au �9 dx <= O. 

PROOF. Observe first that f Au > 0 means liml--,, m ' ( r ) >  0 and this implies 
lim,_.| ti (r) = + oo. 

If liminf,__,~/3(r)/r>O, there exist c 1 > 0  and c 2 E R  such that w(x)>= 
c l u (x) + c2 a.e. Thus ff (r) => cl ti (r) + c2, which contradicts w E L ~(R2). The case 

D(/3) bounded above is even simpler: fi---> oo contradicts u (x )E  D(/3) a.e. 

If I grad u I E M~(R 2) we prove that u ---> - oo in integral mean, a contradiction 

with a(r)---> + oo: in fact since u E L~oc(R2), Igrad u I E M2(R 2) and ms [u > A] < 

o0 for all A ~ R  (for u--->- oo in measure) then 

(2.2) f (u - A) + _-_ Cllgrad u II~msIu > x] 
J 
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where C is independent of u and A (see lemma 5.9, [2]). 
Hence 

fB u<--fR2 (u-X)++AlB"l<--Cllgradull"'ms[u>;tl+XtB"l" 
R 

LettingA---~-ooweconcludethat[BR[-l fB, u(x)dx---~-~asR---~o o. # 

COROI~L~RV 2.1. If f E LI(R 2) and f f <=0, (Et) cannot have a solution if (i) 
or (ii) of Proposition 2.1 holds. 

PROOV. If u is a solution and w =Au + f E f l ( u )  a.e., since w ( x ) > 0  a.e., 
J" w > 0. Therefore f A u  > O. # 

Condition (i) is quoted in [2] to conclude the non-existence of solutions if 
f f  < 0. There the problem of finding solutions for f such that J 'f > 0 is posed, 
thus motivating our work. 

We comment now on the appearance of condition Igradu[EM2(R 2) for 
solutions of (E). First, if u ~ W~(R z) is a radial function and Au E LI(R 2) then 

(2.1) implies that ru'(r) is bounded (we write u = u (r), with r = Ix f> 0) and thus 
[ u'(r)l -- [grad u [ ~  M2(R 2) (see lemma A.3, [2]). More generally if u G W~2(R2), 
Au E L1(R ~) then [grad u [ ~  M2(R 2) is equivalent to grad u---~0 in a.m. (lemma 
A.11, [2]) and this is the case if, for instance, u ~ LP(RN), 1 ~ p =< 0o (lemmas 

A.14, A.15, [21). 
In particular, [grad u I E M2(R 2) for the solutions of [2]. We are going to obtain 

solutions for (P) as limits of those of [2] and the condition will hold in the limit. 
The previous discussion leads us to pose our problem from V = L~+(R 2) = 

{f E L~(R~): f f  > 0} into the class 

s  au  = 0 } .  

Define L ~(R2),, the set of integrable radial functions on R 2, as the completion 
of C~(R2), in L 1-norm. For f ~ L~+(R2), we shall consider radial solutions, i.e. 
u Es163 u E s  if and only if it is representable as u(r)E 
C~(]0, o0[) with (d/dr)(rdu/dr) E L I(O, oo) and lim,~| ru'(r) = O. 

The next theorem is our main result stated in full detail: 

TrmOREM 2.1. The following properties are equivalent: 
(i) There is an a E R  for which (-oo, a )CD( /3 )  and ] 

f . (condition B2). 
_| ~ (t) e-b'dt < oo for every b > 0 
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(ii) There exists some f E LI(R:), for which (Pt) admits a radial solution. 

(iii) (P) is well-posed from L~+(R 2) into ~. 

PROOF. We shall proceed in this order: (i) r (ii), (ii) <:~ (iii), as in [6]. 

(ii) ~ (i): Let u E ~ ,  be a solution of (Pt) and set w = Au +f .  As ru'(r)--->O 

when r ---> 0% for every e > 0 there exist C E R and ro > 0 such that if r > ro 

Then 

f r  r u (r) = u (to)+ u'(r)dr >= u (ro)- e lg(r/ro) = C - e lg r. 
o 

f; f y:: oo> w(r)rdr >- [3~ - e lgr)rdr = K [ 3 ( t ) e x p ( - 2 t / e ) d t  
o o 

with t = C - e  lg r, to = C - e  lg ro, K = (1 / e ) exp (2C/e )>  O. As e is arbitrary 

> 0, condition (Bz) follows. 

(i) f f  (ii): Assume that a continuous differentiable function g : ( -  ~, 0)--* R is 

given such that 

(2.3) g >- 1, g is decreasing, l i m  g(s)  = ~. 

Define u by 

(z.4) 
du 1 

u(1 )=0 .  

if r > l ,  

If g E C ~, k _-_0, (2.4) has a unique solution u E C k+l defined in (1,oo) by 

G (u): = f~ g (s)ds = - lg r. u is decreasing, ru'(r) is negative and increasing. 

Also l im,_~ .u( r )=-o~ ,  for if on the contrary u(r) > - C > - o o  for r >  1 we 

should have g(u)_-  < g(C)  and 

u(1)- u(r)  = " -  u'(s)ds  >- sg-(C) = g 

so that u(r)---)- oo. As we have assumed lim . . . .  g(s) = oo it follows from (2.4) 

that l im,_~ru ' ( r )=0.  As ru' is increasing A u ( x ) =  (1/r)(ru')'>_-0 a.e. and we 

conclude that Au ~ Ll(I x I > 1) (interpret u = u(r) as a radial function in R2). 

Set w(r)  =/32(u(r)) for r _>- 1. We have for fl~l>l w: 
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i~,>1 w(x)dx = 27r yl ~ w(r)rdr=2cr fl=fl~ fo_| fl~ du 

fo 
= {since r = exp( - G(u))} 21r / 3~  2G(u))du = (*). 

We shall find a g satisfying (2.3) and such that (*) is finite. Then continuing u 

smoothly and radially to all of R 2, u will be a radial solution of (P/) if we set 

f :  = - Au + w. 
To build such a g take a sequence {a.} with a n < a n - l < 0  and 

f ~ / 3  ( t)exp ( - 4X/n t )d t  < n-2. Take now g satisfying (2.3) and such that g(a.)<= 
X/n. Then -G(u)=fOg(s)ds <-_g(a.)lul<-_V-nlul if a, < u < 0  and 

fo /3~ 2G(u)) du 

= = /3~ du + /3~ 
n [ I 

<-finite+ ~ ~ foi~ /3~ 

=< finite + ~ X/-~n + 1/n 2 = finite. # 
n 

It remains to prove (ii) r162 (iii). We arrange the proof of this more difficult part 

in a series of lemmas, obtaining at the same time the main properties of the 

solutions. 

LEMMA 2.1. If we can solve (P) in ~, for a radial f with f f > O, we can solve 
(P) in ~, for a radial f with f f arbitrarily small (and positive). 

PROOV. Let u E ~, be a solution of (Pr), f E L~+(R2),. Set uc = u - c for c > 0. 

Then uc ~ E,, Auc = Au so that fAuc = 0. Set wc =/3~ {w,} is a monotone 

sequence, wc--~0 a.e. as c---~o0, hence w,---~0 in LI(R2). Put fc = -Au~ + w~, 

fc ~ L ~+(R2),. As c ~ ~,  f f~ ~ 0. # 

Now we consider the process by which solutions are going to be obtained for 

general f E L ~+(Rz). The idea is to replace (P) by an approximate problem (P)X by 

modifying/3 in such a manner that [2] applies: 

For each X : 0 < X < sup/3 (R) take r~ ~ D (/3) such that A E/3 (r~). Set/3 ~ (s) = 

/3 (s + rA) - A. Then 0 E/3~ (0) f3 Int/3A (R) so that [2], theorem 3.1 solves the 

problem 

(P)~ -Av~ +/3~(vA)~I 
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in the class ~. Set ux = vx + r~. We want to find a solution u for (Pnt) as the limit 

of u~ as A ~ 0. In that direction we have 

LEMMA 2.2. As A J,O the sequences {ux} and {W~}, where W~ = 
[ + A + Auk E [3 (u~), are nonincreasing. 

PROOF. Take 0 < A  < 7 -  Then - o o < r ~  <=r~, A ( u A - u ~ ) =  W ~ -  W~ 

+ (~ / -  A) and v --- vx - v, = ux - u, - (r~ - r,) E ~. Lemma A.13 [2] implies that 

for any p E 

(2.5) f Av "p(v)* f Igradvl2p'(v)<_O, 

[W~ - W ~ - ( A  - r / ) ] p ( v ~ - v ~ ) +  f Igrad(v~-v~)12p'(v~-v,)<=O. 

Now choose ~ b E ~  with ~b(s )=0  for s_<-0, ~b ' (s)>0 for s > 0  and put 

p(s) = ck(s + rA - r~). Then 

f (Wa - W, + r / - A ) ~ b ( u ~ -  u~)+ f [grad(u~-  u~)12~b'(u~- u~)_<-- 0. 

From the nonnegativity of (WA - W~)cb(u~ - u~) and ~/> A we conclude that 

u~ - u~ a.e. 

If [3 is continuous we conclude from W~ ~ [3 (u~), W~ E [3 (u~) that W~ <= W~ 

a.e. In general this argument only gives WA <= W~ a.e. on [uA < u,]. To get 

W~ - W~ a.e. on [uA = u~] we apply Kato's inequality [9] to u~ - u~ : 

A(u,, - uA)+ > sign~(u~ - uA)" A(u~ - u~).* 

Since(u~-uA)+ =(u~-u~)wehavea.e .  on[u~ =u~]thatA(u~-u~)>O. CA 

LEMMA 2.3. If (Pt) has a solution u E ~  and w =Au +[, then u~ ~ u and 
WA J, w a.e. Thus u and w are unique. For j ~ ~o 

f j(w)<-f jff). 
Also if f~, r162 correspond to f 

f (w-fv)§ f f - f )  § 

and 

Ilgrad(u - ti)ll~,2_--- c I I f -  fll,, for a C > O. 

s ign~(s)  = 0 i f  s < O, s ign~(s)  = 1 if s > O. 



264 J.L. VAZQUEZ Isr. J. Math. 

PROOF. Set v = u -  u,. Formula (2.5) is valid for p E ~+ since we have 

v E W~(R2), Igrad v [ ~ M2(R2), Av E LI(R 2) and ms[v > k] < oo for k > 0 (but 

ms[v < -  k] is infinite). We conclude that u,-> u a.e. and W~ _-> w a.e. as 

before. In the limit we obtain u~ = lim u, => u a.e. Since [[Vux JIM2_-< cIIfll, we 

conclude that grad u~--*grad u~ weakly in [L~o~(R2)] 2 and that I[grad u| 

C[[fl[1 ([[" 1[,~ 2 is l.s. continuous under weak Lion-limits). 

Set wA = W~ - A E/3 ~ (v~). From [2], p. 527, we conclude that {w, } is relatively 

compact in LIo~(R 2) and [[ wa [[1 =< Ilfll,. Therefore there exists w= = lim~ ~0 wA, limit 

in LIo,(R 2) and a.e., and [[ w~[[, _-< I[f[[1. Also W~ = w~ + A --* w~ in LIo~(R2). We 

conclude that W~ ~ w~ ~_ w. Passing to the limit in (P)~ we obtain - Au| + w| = 

f. As u~--~u| a.e. and Wx--~w~ in L~o~(R 2) we have w~E/3(u~). 
We prove next that f Au| = 0: Since u E s f Au = 0, lim,~| ru'(r) = 0, i.e. for 

every e > 0 there exists C, R such that fi (r) _-> C - e lg r for r > R. As u| _-_ u we 

have limr__~ ra ' ( r )  ~ 0. But Proposition 2.1 implies that lim ~ ' ( r )  _-< 0, so finally 

f Au| = 0. Thus u| is another solution of (P) and u| _-> u. Also we have w| _-> w ; 

as f A u  = f A u |  f f = f w  =fw| hence w = w~ a.e. Finally if t3 = u| 
then v E s  ~ -_ 0 and At3 = 0. It is easy to see (cf. [2], p. 533) that ~ must be 

constant, u| = u + c. We have the following situation: u E WI~(R 2) for some 

1 < p < 2 ,  w(x)E/3(u(x))f l /3(u(x)+c) a.e., w ELI(Rz). The proof of [2], 

lemma 3.5, applies to imply that either w = 0 (impossible) or C -- 0. Thus u| = u. 

The final statements of the lemma are a consequence of the passage to the 

limit for they are valid for the solutions of [2], when 0 E/3 (0) tq Int/3 (R). # 

In particular, since (E) is invariant under rotations and solutions are unique, 

every possible solution of (Pf) for f radial must be radial. This implies the easy 

step (iii) ~ (ii) in the Theorem. 

Next we use the approximations (P)~ to prove (ii) ~ (iii). 

[,EMMA 2.4. If (ii) holds and f ~ L ~(R 2) there exists a solution u of (E) with 
[grad u [E M2(R2). 

PROOF. Solve (Pr) ~ as in Lemma 2.3 and try to pass to the limit as ,~ ~, 0. As 

{u^} is nonincreasing we shall get a limit if we bound the sequence below. For 

that we use (ii): using Lemma 2.1 we take a radial g E L 10Rz ) with f f  > f g > 0 
and such that (Ps) is solvable in s We set 

1" -auk +/3(u,)-x ~f, w~ =f+x +auk, 
(2.6) [ aft, +/3(a~)-x ~g, g,~ =g+x  +Aa,. 

We use inequality (2.5) with v = fi~ - u^ and p ~ ~ . ,  p(s) = 1 for s > 0. Then 
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f f 
0<= J (ff'~ - Ws)p(fi, -uj , )+ J p'(fi, - us ) lg rad( f i , -us ) [  2 

(2.7) g 

<= j (g -Dp(as  - u~). 

As fis converges a.e. to the solution ti of (P~), that is finite a.e., if lim~ +0u~ < ti 

a.e. the Dominated Convergence Theorem implies that j (g - f )  - 0; false. Thus 

we have u = lims + 0 u, => fi on a set of positive measure. Since us is nonincreas- 

ing as A $ 0 there is a k such that for every large R > 0, ms{[I u~ I < k] n /3 .  (0)} 
is greater than 0 uniformly in A. Also {grad u,} is uniformly bounded in 

MZ-norm, so that lemma A.16 [2] implies that {us} is bounded in L~o~(R 2) for 

p* = p / ( 2 - p ) ,  l < p  < 2 ,  and its limit u E LI'~(R2). 

Now repeat the argument of Lemma 2.3 to show that u is a solution. # 

If we show that the solution of (E) found in Lemma 2.4 satisfies f Au = 0 the 

proof of (ii) f f  (iii) will be complete. Recall that Proposition 2.1 implies that 

.f Au <-0. 

LEMMA 2.5. If (ii) holds then (Pt) is solvable in s for every radial f E L~+(R2). 

If v E ~, and p E ~3 it is trivial to show that rp'(v(r))v'(r) ~ ~ L~(O, oo) PROOF. 

and 

(compare with (2.5)). Apply (2.8) to v = Ux - us of (2.6) to get 

f f  (ff',, - W , , ) p ( a , ,  - u , , ) r d r  + ~'p'(a, - ,,s)(a'~- u'Ordr + p(a~ - ,~)r(a'~- ','0 

f <= If -glrdr. 

So 

r(a'~- u',,)p(fi~, - Us) ~ rjf If - g lrdr. 

As [r(u',-u~)]' converges in L~o~(0,~) (a(as- u~) converges in L~o,(R2)) and 

r(a's- U's) is uniformly bounded in A and r, we have r ( f i~-  u ~ ) ~  r ( t i ' -  u') a.e. 

and 

f (2 .9 )  r(a'-u')p(a-u)N ]f-glrdr---,O as r - - , ~ .  
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Assume now that f A u  = cl <0 .  Then lim,_~ru'(r)= C1<0 SO that u(r)-- 
cl lg r for all large r. Since f Aa = 0, rfi'(r)--> 0 as r ---> ~, so that lim,~| fi (r)/lg r = 

0 and fi - u > 0 for all large r. Taking in (2.9) p E ~+ with p(s) = 1 for s => 0 and 

letting r ---> oo we conclude that lim r(fi' - u') =< 0, contradicting the assumption. 
# 

Another step is provided by 

LEMMA 2.6. If (ii) holds then (P:) is solvable in ~ [or every [ E L ~+(R :) with 
compact support in R 2. 

PROOF. Suppose that supp (f) C BR (0). By Lemma 2.4 we obtain lima ~ o uA = 

tt E W~(R2).  In fix I> R] we have Au~ G/3(uA)- A, Au E/3(u). The argument 

in [2], p. 542, shows that u~L~(lxl>R). Also, it can be shown that 

v~ = u, - r~ tends to zero uniformly as Ix ] ---> ~ at any A such that/3-1(A) = {r~ } 

(see for instance [12], lemma 4). Thus for such A and R1 large, WA E/3(u~) is 

bounded in [[xl>R,]. As W~ is nonincreasing in )t and WA > 0 ,  we have 

w = lim W~ E L| [ > R1] and as in [2] we conclude that u E Cl(Ix I > R). 

Take Ro > R1 and C such that u (x) > C for I x [ = Ro. 

We build now a radial comparison function v ~ ~,, v =< C on [I x ] = Ro] and 

such that - A v + / 3 ( v ) ~ g  for a gEL~[IxI>R1] ,  g<=O. In fact if g is an 

integrable radial function with support in BR,(0) and ~ is the solution of (P~), put 

v = ~ - k, k a sufficiently large constant. Compare now u and v in [[ x I > Ro] to 

conclude that u -> v. As lim,_,~ rv'(r) = 0 we have f Au = l i m , ~  rgt'(r) >= O. (To 

compare u and v begin by comparing ux and vA as in [2], then pass to the 

limit.) # 

LEM~, 2.7. If f,---~[ in L~+(R 2) and (P:.) is solvable, then (Pr) is solvable. 

PROOF. Set 

{ - Au~',+/3(u~)-,~ ~ f . ,  w~ = Au~,+/., 

-au"+/3(u")~f . ,  w" = a u "  + / . ;  

-Au~ + / 3 ( u , ) -  A 9 f ,  w, =Au ,  +f ,  

- A u + / 3 ( u ) D f ,  w = A u + f  (as in Lemma 2.4). 

We have f wT, = f f ,  = f w". Also II w Z -  w~ II1 < I I f - f .  I1,. But w Z -  w~ --, w o - w 
in L~o,(R 2) and a.e. By Fatou we have I I w " -  w II,--<llf-f, I1,. 

[f w-:l<__ f lw- .l+ l Y ,.I+Y,,-fl--<211f-fll,--'0 
as n --> oo. Therefore f w = f L f Au = O. # 
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Thus the proof of (ii) f f  (iii) and of the Theorem is complete. We record the 

main properties of the solutions of (P): 

PROPOSITION 2.2. The following holds for the solutions of (P) in the class s 
(i) G : f ~ u is a single-valued order preserving map from L~.(R 2) into W~o~(R2), 

1 <= p < 2. Every solution u ~ s converges to - ~ at infinity in measure, in integral 

mean and in angular mean. G is bounded on any weakly relatively compact subset 

of L~(R 2) = {f E L l ( R 2 ) : f f  => a}, a > 0, and hence it is weakly sequentially 

continuous. 

(ii) T : f ~ w is an ordered contraction of L ~+(R 2) invariant under rotations and 

translations. 

(iii) If j ~ ~So and f E L~+(R2), w = Tf : 

f J(w)<=f J(f) �9 

In particular II w lip ~ Ilfllp, 1 _-__ p < ~, sup w =< sup/.* 
(iv) There is a constant C <= Ilgrad E211M2 such that 

Ilgrad(u - ti)11~,2 ---5 f i l l -  fll,. 
PROOF. Most of the properties are consequences of theorem 3.1, [2] after 

passing to the limit. The convergence of u is a consequence of Lemma 2.8 to 

follow. Let us prove the boundedness of G:  Let F be a subset of L ~.(R 2) such 

that, uniformly in f E F, (i) f f >= a, (ii) there exists a constant C~ such that 

f If [ _-< C1, (iii) for every e > 0 there exists a compact K C R 2 such that fR~-K Ill < 

e, (iv) for every e > 0 there exists 8 > 0 such that if 12 C R 2 and ms(12) < 8 then 

f , I / ' l <  ~. 
We repeat the proof of Lemma 2.6. Letting A ~, 0 and p(s)-->signo(s)" we 

obtain from (2.7) with u = u r 

uf>vl uf<ol 

If f E F  and f lgl < a/3, we conclude that f[ .~,] f  > a/3. This implies that 

ms[ut>=v]<=8 for a certain 8 > 0 .  On the other hand m s [ u t > h ] <  

~~ <= Thus on any sufficiently large ball B there exists 

h > 0 such that ms [I uf I > h ] = o" > 0, tr independent of f E F. Then lemma 

A.16 [2] implies that {uf} is bounded in LI'o'~(R2), p* < ~. # 

LEMMA 2.8. Let[3 be a m.m. graph such that [3(s)>O for s >a, a ER.  Let 

�9 infw =0. 
" s i g n o ( s ) = l i f s > 0 , 0 i f  s = 0 , - l i f  s < 0 .  
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u Eg- be a solution of - A u + / 3 ( u ) ~ f ,  fELl (R2) .  Then l imsupu <-a in 
measure, in integral mean and in angular mean, as Ix [---> oo. 

PROOF. If w = A u + f E L I ( W ) ,  w ~ f l ( u )  a.e. it is immediate that 
limsupx~= u < a  (m), i.e. ms[u > h ] < ~  if A > a .  

For the convergence in mean apply (2.2) for A > a:  

fB [u[<=f, (u-X)++XlBR[<=ClIgradull'~2ms[u>Al+aIBR]" 
R R 

We conclude that lim sup,~= I BR I-' f , ,  u (x )dx < a. 
For the angular convergence, suppose that lim sup,~= f i ( r )=  b > a. Take a 

sequence {r,} with r,+l_->2r, and f i (r ,)>_b-e for an e, b - a  > 2 e  >0 .  As 

ra'(r)~O take n(e) such that for n >-n(e) and r >= r,, frC*'(r)l <= e ~. Now for 
r. <= r < r, ]e we have for e small enough 

[a(r)-fi(r,)[<= [u'(r)[dr<e21g(r/r.)<e21g[e[<e 
n 

thus u ( r ) >  b - 2 e .  But now 

u(x)dx >(b <=lx]<r,/e]. ~ 2~ )ms [r~ 
r .  <Ix  [~r./~. ] 

This contradicts lim sup._~ ]B~ [-~ fs~ u < a. # 

3. N = 1, 2. A general  discussion 

N = 2. We discuss here the two-dimensional problem 

(Pot) - A u  +/3(u)~f ,  f Au --0. 

We seek solutions for / ~ L ~ ( R  2) in 9- ={u E W,1,;~(R2): Igrad u[ ~M2(W),  

f Au = 0}. Several cases occur: 

Case 1. 0 E Int/3(R) 

By translation we may consider that 0 ~/3(0) N Int fl(R) as in [2]. Theorem 

3.1, [2] says that (P) is well-posed in 9-1 = {u E W~,;~(W), Igrad u I ~ M2(R2)} �9 
f A u  = 0  comes as a consequence of w ELl(R2), w ~/3(u) a.e. Thus (P) is 
well-posed in 9.. 

Case 2. 0 ~'/3 (R) 

Consider only the case/3(R)C (0,00). This is our Section 2. (P) is well-posed 
[rom L ~+(R 2) into 9- i[ and only i[ /3 satisfies condition (B2) at - oo. 
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Case 3. / 3 = 0  
As T :f---> w is the zero map, (P) degenerates from our point of view. 

- A u  = f has solution (determined up to a constant) in BMO(R2), the space of 

functions of bounded mean oscillation. If J ' f  = 0 they belong to s by virtue of 

LEMMA 3.1. Let N >= 2, u E ~., N W,o~(R ), Au EL~(R N) and grad u (x )--* 0 in 

absolute integral mean as x ~ oo. Then u = EN * ( - Au) + c for a certain c E R. 

PROOF. If N=>3 we have the convolution L'(RN)*MN/(N-2~(RN)---> 

MN/(~-2)(R~), see appendix [2]. For N = 2 we have 

L'(RN)*BMO(R2)--->BMO(R2). See Appendix at the end of this work. 

Thus set a = ( - A u ) * E N .  Then IgradalEMN/(N-'~(RN). Put v~= 

(O/Ox~)(u - fi) for i = 1 , . . . ,  N: v, ~ L~o~(R N) and lim,~= v, = 0 (a.i.m.). Lemma 

A.8, [2] implies that v~ = 0, hence u = r~ + c. # 

Thus (P) is well-posed from {f E L '(R2) : f f = 0} into s 

Case 4. /3 non-positive or non-negative and 0 E/3 (0) 

Consider, for instance, /3 (R) C [0, ~) and /3-1(0) = ( - ~, b ], b E R. Then 

(i) f f  > 0. Theorem 2.1 and Proposition 2.2 apply with minor changes; now 

we get limsupr_=fi(r)=<b. If f=>0 a.e., r e 0  then u =>b a.e. Solutions are 

unique. 

(ii) f f  < 0. No solution exists (see Corollary 2.1). 

(iii) If f f  = 0, necessarily w = Au + f = 0 a.e. for any solution (f w = f f  = 0 

and w => 0). Thus we are reduced to solve - Au = f with u E s (case 3) and also 

u bounded above. This last condition is fulfilled if f E L p (R2), 1 < p =< 0% f has 

compact support (and f f  = 0): then f * E2 is a continuous solution of (P) that 

converges to zero at oo (uniformly, u(x )  = O ( I x  I-')). On the other hand take 

fEL ' (RZ) , ,  f f = O  and f ( x ) = ( r l g ( l / r ) )  -2 for all r---Ixl small. Then u is 

equivalent near 0 to l g ( -  lg r), so that u (0)=  + oo. 

(P) is well-posed from a V, LI(R 2) C V C {f E L'(R2); f f  >= 0} into ~d. (For the 

well-posedness use the Lemma 2.3.) 

N = 1. Here 

= 0 .  

We take s = {u E C'(R):  u ' ( -  +oo) = 0}. The same cases as in N = 2 apply and 

similar phenomena occur. Case 1 is dealt with in [2]: (P) is well-posed in 2. Case 

2 for positive/3 is Crandall and Evans's [6]: (P) is well-posed from L '+(R) into s if 

and only if/3 is integrable at -oo. 
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Case 3, /3 --- 0 has the explicit solution u = c - x f X f ( s ) d s  

+fo f ( s )ds  +fof (s)sds;  u E ~  if and only if f f  = 0 and case 4 goes as in N = 2: 

thus if/3 => 0 and f f  --0 we are reduced to solve - u " =  f with u E ~ bounded 

above. As u E C1(R) non-boundedness can occur only at 0c. For instance, if f has 

compact support, u is constant outside supp( / )  and (PI) is solvable. On the 

contrary, if f E L I(R), f f = 0 and f ( x )  = x-2 for large x, u (x) is equivalent to lg x 

as Ix I--~ oo and (PI) is not solvable. 

4. N_->3 

The situation is quite different in dimensions N _-> 3. Thus it is shown in [1] that 

we can impose the condition f Au = 0 on the solutions of [2] only if/3 satisfies 

fo lim /3 (r)lr I-2tN-l~/tN-2)dr = ~. 
r--,O 

On the other hand, [2] shows solutions in MN/tN-2~(RN), hence they converge 

to 0 (a.i.m.). In fact lemma A.5 [2] says that for a u E L~oc(RN), N => 3 with 
Au ~ LI(RN), limx~| u = 0  (a.i.m.) if and only if u = EN * ( - A u )  and hence 

u E M~/tN-2)(R N) and ]grad u[ E MN/tN-1~(RN). 

Set E = {u E L~o,(RN):lgrad u I E MN/tN-I~(RN)} and Ec = {u ~ W~g(RN): 
u - c E MN/tN-2~(RN)}, Ec C ~. B6nilan and Br6zis [1] have studied (P) = (E) in 

case /3 (R)~0 .  I f /3 - t (0 )={a} ,  (P) is well-posed in ~ and ~ .  But if /3-1(0) = 

[a ,b] ,  -oo<=a~b<= ~176 (P) is well-posed in ~ for every cE/3-1(0);  (P) is 

well-posed in ~ only if/3 - O. Every solution in E belongs to an Er 

If 0 ~ /3  (R) we show a negative result: A reasonable well-posed problem is not 

possible as a consequence of the following 

PROPOSITION 4.1. Let u E W ~ ( R  N) with grad u - o 0  (a.i.m.) [in particular if 

IgraduI~MN/tN-1)(RN)] and Au E L I ( R  N) and let fl be a m.m.g, such that 

/3(R)C (0,oo). Then/3~ is not integrable on R N. 

PROOF. Under  the conditions of the proposition, Lemma 3.1 implies that 

u = E ~ * ( - A u ) + c  for a certain c E R .  Thus limx-.| = c  in measure. But 

/3~ LI(R N) and f l (R)C (0,oo) imply that u - - > -  o0 in measure, a contradic- 

tion. # 

Proposition 4.1 excludes, for instance, the possibility of any radial solution, 
for if u = u(r) is a radial solution, u E Cl(0,oo) and u'(r)r N-1 is bounded. But this 

implies [grad u I = ]u'(r)] E Mm'N-1'(RN) (see lemma A.3 [2]). 
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Appendix 

We collect here a series of results, some of them well-known, related to the 
solution of - A u  = f  E LI(R2). We thank R. Moriyon for valuable advice. 

LEMMA A.1. The convolution (f, g ) ~  f * g is a continuous bilinear mapping 

H'(R N) • L ~(RN)---> H~(RN), where N >= 1 and H 1 denotes the Hardy space. 

PROOF. Let Rj, ] = 1 , . . . ,  N, be the Riesz transforms, Rj : L 1 --~ 5e' (the space 

of tempered distributions) defined by 

- & h ~ ) ,  R,f (~)  - I~l 

where ^ denotes Fourier transform. Since HI(R N) ={fEL~(RN):  

R,( f )EL' (RN),  ] = I , . . . , N }  is normed by IIflI.,=IIflI.+Y~7_~IIR, fII., and 
R j ( f *  g) = R j f *  g in 5e' (check the Fourier transforms), we deduce for f E 
H~(RN), g E L ~(R N) that 

Ill * g I1,,, --< IIf I1,,, II g ILL,. # 

We recall that the members of the space BMO(R N) of "functions of bounded 

mean oscillation" are classes of functions up to an arbitrary additive constant. 

Denote by [/] the class of f. We have 

LEMMA A.2. There is a continuous bilinear mapping BMO • L ~ ~ BMO. For 

[f] @ BMO(RN), g E L~(R N) (integrable with compact support), r~ is ordinary 

convolution (except J:or a constant). I f  gn E L~ and g,--~ g in L~(R N) 

f ~, g (x )  = lim f .~ f(t)gn (x - t)dt (limit in BMO). 

PROOF. Since BMO(R ~) is the dual of H~(RN), we define * by adjointness: 
for If] E BMO(RN), g E LI(RN), h E H1(R N) the following formula must hold: 

([f '~ g], h )BMO• = ([f], g Z, h )aMO• 

where ~(s) = g ( -  s). So we have immediately 

II f ~ g llano =< II f II~Mo. II g II,. 

If g ~ L~(RN), the integral f *  g(x)  = f f ( t ) g ( x  - t)dt converges a.e. and 
belongs to L~o~(RN). By checking on the atoms of HI(R N) (compactly supported 

and bounded generators of H ~, see [ l l  D we conclude that If* g] = [f'~g]. For 

the final statement we use the continuity of ,~. # 
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LEMMA A.3. If  [f]~BMO(RN), Vf~MP(R N) and g(ELI(RN). Then 

V(g ~ [ )  = g * Vf E M p (aN). 

PROOF. Take first g EL~(RN); the verification is immediate. For general 

g E L I(RN), if go --~ g in L l, then f ,~ g, -~  f ~, g in BMO and V[ * g, ---> Vf * g in 
L~oc(R N) (for the convolution M p x L~- - ,M p, see [2]). Thus we obtain the 

following 

PROPOSITION A.1. For every g E L ~(R 2) there is a unique solution of - Au = g 

in ~'(R 2) in the class {u E L~oc(RN) : Igrad u I E M2(R2)} except for an arbitrary 

additive constant. It is given by 

1 1 u = ~ lg ~ ,~ g ~ BMO(R 2) 

and then 

1 
grad u = 2r I x-----~ * g E M2(R2). 

PROOF. Existence follows from the lemmas. Uniqueness was proved in 

Lemma 3.1. # 
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