MONOTONE PERTURBATIONS OF THE LAPLACIAN IN $L^1(\mathbf{R}^N)$

BY JUAN LUIS VÁZOUEZ

ABSTRACT

The semilinear perturbation of Poisson's equation (E): $-\Delta u + \beta(u) \ni f$, where β is a maximal monotone graph in R, has been investigated by Ph. Bénilan, H. Brézis and M. Crandall for $f \in L^1(\mathbb{R}^N)$, $N \ge 1$, under the assumptions $0 \in B(0)$ if $N \ge 3$ and $0 \in \beta(0) \cap \text{Int } \beta(\mathbb{R})$ if $N=1,2$. We discuss in this paper the solvability and well-posedness of (E) in terms of any maximal monotone graph β . In particular, if β takes only positive values and $N \ge 3$ we prove that no solution exists; if $N = 2$ we give necessary and sufficient conditions on β and f for (E) to be solvable in a natural sense.

Introduction

This paper deals with the following nonlinear perturbation of Poisson's equation in \mathbb{R}^N , $N \ge 1$:

$$
(E) = (E_{\beta,f,N}) \qquad \qquad -\Delta u + \beta(u) \ni f
$$

where β is a maximal monotone graph in **R** (m.m.g. for short; see e.g. Brézis [4]). In particular you can assume throughout that β is a continuous, nondecreasing function on **R** and write (E) as an equality. The function f will belong to $L^1(\mathbb{R}^N)$.

In case $0 \in \beta(0)$ if $N \ge 3$ or $0 \in \beta(0) \cap$ Int $\beta(\mathbb{R})$ if $N = 1, 2$ we owe Bénilan, Brézis and Crandall [2] a detailed study of (E): for every $f \in L^1(\mathbb{R}^N)$ they obtain a solution $u \in W_{loc}^{1,1}(\mathbb{R}^N)$ such that $w = \Delta u + f \in \beta(u)$ a.e.[†] is integrable. If u is chosen in the appropriate class (see discussion to follow) w is uniquely determined and the map $T: f \rightarrow w$ is an ordered contraction in $L^1(\mathbb{R}^N)$; we say that the operator $A = -\Delta \circ \beta^{-1}$ (defined by $Aw = -\Delta u$) is *m-accretive* in $L^1(\mathbb{R}^N)$. This is an important property for then A generates a semigroup of contractions in $L^{1}(\mathbb{R}^{N})$ that enables us to solve the evolution equation

^{*} $w = \beta(u)$ if β is a function.

Received July 15, 1981 and in revised form May 1, 1982

256 J. L. VÁZOUEZ Isr. J. Math.

$$
\begin{cases} u_t - \Delta \beta^{-1}(u) = 0 & \text{in } \mathbb{R}^N \times]0, T[\\ u(0, x) = u_0(x) \in L^1(\mathbb{R}^N) \end{cases}
$$

via discretization in time (Crandall-Liggett's Theorem, see [5], [7]).

In [6] Crandall and Evans consider equation (E) in dimension $N = 1$ for β a m.m.g. such that $\beta(\mathbf{R}) \subset (0,\infty)$, imposing conditions at infinity $u'(\pm \infty) = 0$. Attention to this case had been drawn by T. Kurtz [10] in the particular form $e^{u} - u'' = f$, $u'(\pm \infty) = 0$. Crandall and Evans show that the problem is solvable only if β is integrable at $-\infty$ and in that case A is accretive and $R(I + A)$ = $L^1(\mathbf{R}) = \{f \in L^1(\mathbf{R}) : f \geq 0\} = D(A)$ so that (P_{ev}) may be solved as hinted above for initial data $u_0 \in L^1_+(\mathbf{R})$.

Bénilan and Brézis [1] consider (E) for non-negative β , $\beta(\mathbf{R}) \ni 0$, in $N \ge 3$ when studying the Thomas-Fermi equation.

S. Fisher considers in [8] a more general situation where β is a continuous function, not necessarily monotone $(N = 1)$.

Our concern in this paper is to complete the discussion of equation (E) under suitable conditions at infinity (if any needed) in terms of all possible m.m.g. β and for $f \in L^1(\mathbb{R}^N)$, $N \ge 1$:

 $N = 2$. The main novelty appears when β takes on only positive (or only negative) values. We then pose the problem consisting of equation (E) plus the condition of *null flux:*

$$
\int \Delta u \cdot dx = \lim_{r \to \infty} \int_0^{2\pi} \frac{\partial u}{\partial r} r d\theta = 0
$$

and prove the following result (see Theorem 2.1):

MAIN RESULT. Let $\beta(\mathbf{R}) \subset (0, \infty)$. For every $f \in L^1(\mathbf{R}^2)$ *such that* $\int f > 0$ *there exists a unique* $u \in W^{1,1}_{loc}(\mathbb{R}^2)$ *with* $|grad\ u | \in M^2(\mathbb{R}^2)$ *,* $\Delta u \in L^1(\mathbb{R}^2)$ *and* $\int \Delta u \cdot dx = 0$ such that $\Delta u + f \in \beta(u)$ a.e. if and only if β satisfies the following *condition of integrability at* $-\infty$:

There exists a $\in \mathbb{R}$ *with* $(-\infty, a) \subset D(\beta)$ *and*

$$
\left(B_{2}\right)
$$

$$
\int_{-\infty}^a \beta(t) \exp(-bt) dt < \infty \quad \text{for every } b > 0.
$$

 $N = 3$. We prove a *negative* result in case $\beta(\mathbf{R}) \not\exists 0$: Under mild (and natural)

^t $M^p(\mathbb{R}^N) = L(p, \infty)$, $1 < p < \infty$, denotes the Marcinkiewicz space or weak-L^p space, see appendix of [21.

conditions on *u* no solution of (E) can exist such that $\beta^{0}(u)^{\dagger} \in L^{1}(\mathbb{R}^{N})$ (Proposition 4.1).

 $N = 1$. [2] and [6] already contain the basic results.

It turns out that the situation is very similar when $N = 1$ and 2 and, on the other hand, for all $N \geq 3$. For that reason our work owes much in motivation and techniques to [6] and, of course, to [2].

The plan is as follows: we collect some preliminary results and notation and formulate the problem in Section 1. In Section 2 we consider the case $N = 2$, $\beta(\mathbf{R}) \subset (0, \infty)$. In Section 3 we present a *general discussion* for $N = 1$ and 2. $N = 3$ is treated in Section 4. We conclude with a technical appendix.

1. Preliminaries

We begin with some basic definitions and notation. Given β a m.m.g. in **R** and $f \in L^1(\mathbb{R}^N)$ we say that $u \in L^1_{loc}(\mathbb{R}^N)$ is a *solution* of the equation (E): $-\Delta u$ + $\beta(u) \ni f$, if $\Delta u \in L^1(\mathbb{R}^N)$, in the sense of distributions and $w = \Delta u + f \in \beta(u)$ a.e. In order to obtain a *well-posed problem* $(P) = (P_{\beta f})$, a condition on the behaviour of the solutions at infinity must be added in general. Then a subspace \mathcal{L} of $L^{1}_{loc}(\mathbb{R}^{N})$ is considered where the solutions of (P) are to be found. ($\&$ contains, in general, the conditions at infinity.) We define the *solution maps* $G = G_\beta : L^1(\mathbb{R}^N) \to \mathbb{R}$, $G(f) = u$ solution of $(P_{\beta,f})^{\dagger}$ and $T =$ $T_{\beta}:L^1(\mathbb{R}^N)\to L^1(\mathbb{R}^N),$ $T(f)=w\equiv \Delta u+f$ with domain $D(G)=D(T)=$ ${f \in L^1(\mathbf{R}^N) : (P_{\beta,f}) \text{ admits a solution in } \Omega}.$

We say that (P) is *well-posed from* $V \subset L^1(\mathbb{R}^N)$ *into* Ω if

(I) $D(G) = V$ (Existence)

(II) T is single-valued (Uniqueness)

(III) $\int (Tf - T\hat{f})^+ \leq \int (f - \hat{f})^+$ for $f, \hat{f} \in L^1(\mathbb{R}^N)$ (Continuous Dependence) If $V = L^{1}(\mathbb{R}^{N})$ we simply say that (P) is *well-posed in* \mathcal{L} , in accordance with [2]. A *solution* of (P) will be a solution of (E) in the class \mathcal{L} .

We follow, in general, notations in [2]. In particular we set

 $\Im_0 = \{j : \mathbf{R} \to [0, \infty) : j \text{ convex, lower semi-continuous}, j(0) = 0\},\$

 $\mathfrak{B} = \{ p \in C^1(\mathbf{R}) \cap L^{\infty}(\mathbf{R}) : p \text{ nondecreasing} \},\$

$$
\mathfrak{P}_0 = \{p \in \mathfrak{P} : p(0) = 0\}, \qquad \mathfrak{P}_+ = \{p \in \mathfrak{P} : p \geq 0\}.
$$

We write $[u > a]$ for $\{x \in \mathbb{R}^N : u(x) > a\}$ and so on. If $\Omega \subset \mathbb{R}^N$ is measurable

^{*t*} If β is multivalued and $s \in D(\beta)$, $\beta^{0}(s)$ is the element in $\beta(s)$ of minimal absolute value (see [4]). For a function it is simply $\beta(s)$.

" Note that G is not necessarily single-valued.

 $|\Omega| = ms \Omega$ is its (Lebesgue) measure, b_N is the volume of the unit ball $B_1(0)$ in \mathbb{R}^N , $\omega_N = Nb_N$ the $N-1$ dim. measure of the sphere $S_1(0)$. We shall use the fundamental solutions of $-\Delta$ in \mathbb{R}^N (see [2], appendix): if $N \ge 3$,

$$
E_N(x) = [(N-2)b_N]^{-1} |x|^{2-N}; \quad E_2(x) = -(2\pi)^{-1} |g|x|, \quad E_1(x) = -\frac{1}{2} |x|.
$$

We consider several types of convergence at infinity, i.e. as $|x| \rightarrow \infty$, for functions $u = u(x)$ defined on \mathbb{R}^N :

(i) we say that u converges to $a \in \mathbb{R}$ *in measure,* $u(x) \rightarrow a$ (m), if for every $\varepsilon > 0$, *ms* $[|a - u| > \varepsilon]$ is finite. $u(x) \to \infty$ (m) if for every $a \in \mathbb{R}$, *ms* $[u < a] < \infty$. Similarly $u \rightarrow -\infty$ (m).

(ii) We say that $u \in L^1_{loc}(\mathbb{R}^N)$ tends to a at infinity in *absolute integral mean*, $u \rightarrow a$ (a.i.m.) if

(1.1)
$$
\lim_{R \to \infty} \frac{1}{|B_R|} \int_{B_R} |u(x) - a| dx = 0
$$

or equivalently if

(1.2)
$$
\lim_{n \to \infty} \int_{1 \le |x| \le 2} |u(nx) - a| dx = 0.
$$

(This formulation is used in [2], appendix.)

(iii) $\lim_{x\to\infty} u = a$ in *integral mean* (i.m.) if

(1.3)
$$
\lim_{R\to\infty}\frac{1}{|B_R|}\int_{B_R}u(x)dx=a.
$$

Corresponding definitions hold for $|u| \rightarrow \infty$ or $u \rightarrow \pm \infty$ (i.m.). Functions in $L^p(\mathbf{R}^N)$, $1 \leq p < \infty$ or in $M^p(\mathbf{R}^N)$, $1 < p < \infty$ tend to zero at infinity (m) and (a.i.m.).

(iv) For $N \ge 2$ and $u \in L^1_{loc}(\mathbb{R}^N)$ we define the angular mean of u, $\tilde{u}:]0, \infty[\rightarrow \mathbb{R}, \tilde{u}(r) = |\omega_N|^{-1} \int_{\alpha \in S} u(r\sigma) d\sigma$ where $d\sigma$ is the surface measure on S_1 . u converges to $a \in \mathbb{R}$ at infinity *in angular mean* if $\lim_{r \to \infty} \tilde{u}(r) = a$.

2. $N = 2$, $\beta(\mathbf{R}) \subset (0, \infty)$

In this section (E): $-\Delta u + \beta(u) \ni f$ is studied for $N = 2$ and β a positivevalued m.m.g. We begin by discussing the functional setting in which (E) becomes a well-posed problem.

First, if $u \in L^1_{loc}(\mathbb{R}^2)$ is a solution of (E), then $\lim_{s \to -\infty} \beta(s) = 0$ and $\lim_{x\to\infty} u(x) = -\infty$ in measure. This is a consequence of $w = \Delta u + f \in \beta(u)$ a.e. and $w \in L^1(\mathbb{R}^N)$. Hence we assume hereafter that $\beta(-\infty)=0$.

Also if $u \in W^{1,1}_{loc}(\mathbb{R}^N)$ with $\Delta u \in L^1_{loc}(\mathbb{R}^N)$ it is easy to prove that $\tilde{u} \in C^1([0,\infty])$ and

$$
(2.1) \quad 2\pi r\tilde{u}'(r) = r\frac{d}{dr}\left(\frac{1}{r}\int_{|x|=r}u(x)d\sigma\right) = \int_{|x|\leq r}\Delta u\cdot dx, \quad \text{for a.e. } r>0
$$

(see e.g. [12]). As $\Delta u = f - w$, we have $\lim_{r \to a} r r r'$ ($r = \int_{\mathbb{R}^2} (f - w)$, as $r \to \infty$, so that $\int f = \int w$ if and only if $\lim_{r \to \infty} r\tilde{u}'(r) = 0$. This was precisely the situation in case $0 \in \beta(0) \cap \text{Int }\beta(\mathbb{R})$ (theorem 3.1 of [2]).

In our case a condition at infinity must be specified. We select expression (2.1) and interpret it as the flux emerging through $|x| = R$ by virtue of the following argument: if $u \in W^{1,1}_{loc}(\mathbb{R}^2)$ with $\Delta u \in L^1_{loc}(\mathbb{R}^N)$ then on a.e. sphere $S_R =$ $[|x| = R]$, $\partial u / \partial r \in L^1(S_R)$ and

$$
\int_{|x| \le R} \Delta u \cdot dx = \int_{|x|=R} \frac{\partial u}{\partial r} \cdot d\sigma = \text{flux of grad } u \text{ through } S_R.
$$

We shall solve equation (E) plus the condition of "null flux at infinity", a homogeneous-Neumann-type condition. Thus we formulate

$$
\begin{cases}\n-\Delta u + \beta(u) \ni f, \\
\int \Delta u \cdot dx = 0.\n\end{cases}
$$

We remark that a condition of positive flux at infinity would not be compatible with our problem in general. In fact we have

PROPOSITION 2.1. Let $u \in L^1_{loc}(\mathbb{R})$ *be any function with* $\Delta u \in L^1(\mathbb{R})$. If a *section w of* $\beta(u)$ *is integrable and either (i) D(* β *) is bounded above or D(* β *)* = **R** *and* lim inf_{r-> ∞} β (r)/r > 0 *or* (ii) | grad $u \in M^2(\mathbb{R}^2)$, *then necessarily* $\int \Delta u \cdot dx \leq 0$.

PROOF. Observe first that $\int \Delta u > 0$ means $\lim_{r \to \infty} r\mu'(r) > 0$ and this implies $\lim_{r\to\infty} \tilde{u}(r) = +\infty.$

If liminf_{r-xx} $\beta(r)/r > 0$ *, there exist* $c_1 > 0$ and $c_2 \in \mathbb{R}$ such that $w(x) \geq$ $c_1 u(x) + c_2$ a.e. Thus $\tilde{w}(r) \ge c_1 \tilde{u}(r) + c_2$, which contradicts $w \in L^1(\mathbb{R}^2)$. The case *D(* β *)* bounded above is even simpler: $\tilde{u} \rightarrow \infty$ contradicts $u(x) \in D(\beta)$ a.e.

If $|\text{grad } u| \in M^2(\mathbb{R}^2)$ we prove that $u \to -\infty$ in integral mean, a contradiction with $\tilde{u}(r) \rightarrow +\infty$: in fact since $u \in L^1_{loc}(\mathbb{R}^2)$, |grad $u \in M^2(\mathbb{R}^2)$ and *ms* $[u > \lambda]$ < ∞ for all $\lambda \in \mathbb{R}$ (for $u \to -\infty$ in measure) then

(2.2)
$$
\int (u - \lambda)^{+} \leq C \|\text{grad } u\|_{M^{2}} \text{ ms}[u > \lambda]
$$

where C is independent of u and λ (see lemma 5.9, [2]).

Hence

$$
\int_{B_R} u \leqq \int_{R^2} (u - \lambda)^+ + \lambda |B_R| \leqq C ||\text{grad } u||_{M^2} m s [u > \lambda] + \lambda |B_R|.
$$

Letting $\lambda \to -\infty$ we conclude that $|B_R|^{-1} \int_{B_R} u(x) dx \to -\infty$ as $R \to \infty$. #

COROLLARY 2.1. *If* $f \in L^1(\mathbb{R}^2)$ *and* $\int f \leq 0$, (E_t) *cannot have a solution if (i) or* (ii) *of Proposition* 2.1 *holds.*

PROOF. If u is a solution and $w = \Delta u + f \in \beta(u)$ a.e., since $w(x) > 0$ a.e., $\int w > 0$. Therefore $\int \Delta u > 0$.

Condition (i) is quoted in [2] to conclude the non-existence of solutions if $\int f < 0$. There the problem of finding solutions for f such that $\int f > 0$ is posed, thus motivating our work.

We comment now on the appearance of condition $|grad u| \in M^2(\mathbb{R}^2)$ for solutions of (E). First, if $u \in W^{1,1}_{loc}(\mathbb{R}^2)$ is a radial function and $\Delta u \in L^1(\mathbb{R}^2)$ then (2.1) implies that $ru'(r)$ is bounded (we write $u = u(r)$, with $r = |x| > 0$) and thus $|u'(r)| = |\text{grad } u| \in M^2(\mathbb{R}^2)$ (see lemma A.3, [2]). More generally if $u \in W^{1,1}_{loc}(\mathbb{R}^2)$, $\Delta u \in L^1(\mathbb{R}^2)$ then $|\text{grad } u| \in M^2(\mathbb{R}^2)$ is equivalent to grad $u \to 0$ in a.m. (lemma A.11, [2]) and this is the case if, for instance, $u \in L^p(\mathbb{R}^N)$, $1 \leq p \leq \infty$ (lemmas A.14, A.15, [21).

In particular, $|grad u| \in M^2(\mathbb{R}^2)$ for the solutions of [2]. We are going to obtain solutions for (P) as limits of those of [2] and the condition will hold in the limit.

The previous discussion leads us to pose our problem from $V = L_{+}^{1}(\mathbb{R}^{2}) =$ ${f \in L^1(\mathbf{R}^N) : f > 0}$ into the class

$$
\mathfrak{L}=\left\{u\in W^{1,1}_{loc}(\mathbf{R}^2):|\text{grad }u|\in M^2(\mathbf{R}^2),\,\Delta u\in L^1(\mathbf{R}^2),\,\int \Delta u=0\right\}.
$$

Define $L^1(\mathbb{R}^2)$,, the set of integrable radial functions on \mathbb{R}^2 , as the completion of $C^1(\mathbb{R}^2)$, in L^1 -norm. For $f \in L^1(\mathbb{R}^2)$, we shall consider radial solutions, i.e. $u \in \mathbb{S}_r := L^1_{loc}(\mathbb{R}^2)$, $\cap \mathbb{S}_r$ u $\in \mathbb{S}_r$ if and only if it is representable as $u(r) \in$ $C^1(]0, \infty[)$ with $(d/dr)(rdu/dr) \in L^1(0, \infty)$ and $\lim_{r \to \infty} ru'(r) = 0$.

The next theorem is our main result stated in full detail:

THEOREM 2.1. *The following properties are equivalent*: (i) *There is an a* $\in \mathbb{R}$ *for which* $(-\infty, a) \subset D(\beta)$ *and* $\{a \}$ (condition B_2). $\beta(t) e^{-bt} dt < \infty$ for every $b > 0$

- (ii) *There exists some f* $\in L^1(\mathbb{R}^2)$, *for which* (P_t) *admits a radial solution.*
- (iii) (P) *is well-posed from* $L^1_+(\mathbb{R}^2)$ *into* Ω *.*

PROOF. We shall proceed in this order: (i) \Leftrightarrow (ii), (ii) \Leftrightarrow (iii), as in [6].

(ii) \Rightarrow (i): Let $u \in \mathcal{L}_r$ be a solution of (P_t) and set $w = \Delta u + f$. As $\tau u'(r) \rightarrow 0$ when $r \rightarrow \infty$, for every $\epsilon > 0$ there exist $C \in \mathbb{R}$ and $r_0 > 0$ such that if $r > r_0$

$$
u(r) = u(r_0) + \int_{r_0}^r u'(r) dr \geq u(r_0) - \varepsilon \lg(r/r_0) = C - \varepsilon \lg r.
$$

Then

$$
\infty > \int_{r_0}^{\infty} w(r) r dr \geq \int_{r_0}^{\infty} \beta^0 (C - \varepsilon \lg r) r dr = K \int_{-\infty}^{r_0} \beta(t) \exp(-2t/\varepsilon) dt
$$

with $t = C - \varepsilon \lg r$, $t_0 = C - \varepsilon \lg r_0$, $K = (1/\varepsilon) \exp(2C/\varepsilon) > 0$. As ε is arbitrary > 0 , condition (B₂) follows.

(i) \Rightarrow (ii): Assume that a continuous differentiable function $g: (-\infty, 0) \rightarrow \mathbb{R}$ is given such that

(2.3)
$$
g \ge 1
$$
, g is decreasing, $\lim_{x \to \infty} g(s) = \infty$.

Define u by

(2.4)
$$
\begin{cases} g(u) \frac{du}{dr} = -\frac{1}{r}, & \text{if } r > 1, \\ u(1) = 0. \end{cases}
$$

If $g \in C^k$, $k \ge 0$, (2.4) has a unique solution $u \in C^{k+1}$ defined in $(1, \infty)$ by $G(u) := \int_0^u g(s) ds = -\lg r$. u is decreasing, $r u'(r)$ is negative and increasing. Also $\lim_{r\to\infty} u(r) = -\infty$, for if on the contrary $u(r) \geq C > -\infty$ for $r > 1$ we should have $g(u) \leq g(C)$ and

$$
u(1) - u(r) = \int_1^r -u'(s)ds \geq \int_1^r \frac{ds}{sg(C)} = \frac{1}{g(C)} \lg r
$$

so that $u(r) \rightarrow -\infty$. As we have assumed $\lim_{s \rightarrow -\infty} g(s) = \infty$ it follows from (2.4) that $\lim_{x\to\infty}ru'(r)=0$. As *ru'* is increasing $\Delta u(x)=(1/r)(ru')'\geq 0$ a.e. and we conclude that $\Delta u \in L^1(|x| > 1)$ (interpret $u = u(r)$ as a radial function in \mathbb{R}^2).

Set $w(r) = \beta^2(u(r))$ for $r \ge 1$. We have for $\int_{|x|>1} w$:

$$
\int_{|x|>1} w(x)dx = 2\pi \int_{1}^{\infty} w(r)rdr = 2\pi \int_{1}^{\infty} \beta^{0}(u(r))rdr = 2\pi \int_{-\infty}^{0} \beta^{0}(u)g(u)r^{2}(u)du
$$

= {since $r = \exp(-G(u))$ } $2\pi \int_{-\infty}^{0} \beta^{0}(u)g(u)\exp(-2G(u))du = (*)$.

We shall find a g satisfying (2.3) and such that $(*)$ is finite. Then continuing u smoothly and radially to all of \mathbb{R}^2 , u will be a radial solution of (P_f) if we set $f: = -\Delta u + w$.

To build such a g take a sequence $\{a_n\}$ with $a_n < a_{n-1} < 0$ and $\int_{-a}^{a_n} \beta(t) \exp(-4\sqrt{n}t) dt \leq n^{-2}$. Take now g satisfying (2.3) and such that $g(a_n) \leq$ \sqrt{n} . Then $-G(u) = \int_u^0 g(s) ds \leq g(a_n) |u| \leq \sqrt{n} |u|$ if $a_n < u < 0$ and

$$
\int_{-\infty}^{0} \beta^{0}(u)g(u) \exp(-2G(u))du
$$
\n
$$
= \sum_{n=1}^{\infty} \int_{a_{n+1}}^{a_n} \beta^{0}(u)g(u) \exp(-2G(u))du + \int_{a_1}^{0} \beta^{0}(u)g(u) \exp(-2G(u))du
$$
\n
$$
\leq \text{finite} + \sum_{n} \sqrt{n+1} \int_{a_{n+1}}^{a_n} \beta^{0}(u) \exp(2\sqrt{n}u)du
$$
\n
$$
\leq \text{finite} + \sum_{n} \sqrt{n+1}/n^{2} = \text{finite}. \qquad \#
$$

It remains to prove (ii) \Leftrightarrow (iii). We arrange the proof of this more difficult part in a series of lemmas, obtaining at the same time the main properties of the solutions.

LEMMA 2.1. If we can solve (P) in \mathcal{R} , for a radial f with $\int f > 0$, we can solve (P) in \mathcal{R} , for a radial f with $\int f$ arbitrarily small (and positive).

PROOF. Let $u \in \mathcal{Q}$, be a solution of (P_t) , $f \in L^1(\mathbb{R}^2)$. Set $u_c = u - c$ for $c > 0$. Then $u_c \in \mathcal{L}_r$, $\Delta u_c = \Delta u$ so that $\int \Delta u_c = 0$. Set $w_c = \beta^0(u_c)$: $\{w_c\}$ is a monotone sequence, $w_c \rightarrow 0$ a.e. as $c \rightarrow \infty$, hence $w_c \rightarrow 0$ in $L^1(\mathbb{R}^2)$. Put $f_c = -\Delta u_c + w_c$, $f_c \in L^1(\mathbb{R}^2)$, As $c \to \infty$, $\int f_c \downarrow 0$. #

Now we consider the process by which solutions are going to be obtained for general $f \in L^1(\mathbb{R}^2)$. The idea is to replace (P) by an approximate problem (P)^{λ} by modifying β in such a manner that [2] applies:

For each $\lambda : 0 < \lambda < \sup \beta(\mathbf{R})$ take $r_{\lambda} \in D(\beta)$ such that $\lambda \in \beta(r_{\lambda})$. Set $\beta^{\lambda}(s) =$ $\beta(s + r_A) - \lambda$. Then $0 \in \beta^{\lambda}(0) \cap \text{Int }\beta^{\lambda}(R)$ so that [2], theorem 3.1 solves the problem

$$
(P)^{\lambda} \qquad -\Delta v_{\lambda} + \beta^{\lambda}(v_{\lambda}) \exists f
$$

in the class $\&$. Set $u_{\lambda} = v_{\lambda} + r_{\lambda}$. We want to find a solution u for $(P_{\beta f})$ as the limit of u_{λ} as $\lambda \downarrow 0$. In that direction we have

LEMMA 2.2. As $\lambda \downarrow 0$ the sequences $\{u_{\lambda}\}\$ and $\{W_{\lambda}\}\$, where $W_{\lambda} =$ $f + \lambda + \Delta u_{\lambda} \in \beta(u_{\lambda}),$ are nonincreasing.

PROOF. Take $0 < \lambda < \eta$. Then $-\infty < r_{\lambda} \le r_{\eta}$, $\Delta(u_{\lambda} - u_{\eta}) = W_{\lambda} - W_{\eta}$ $+(\eta-\lambda)$ and $v = v_{\lambda} - v_{\eta} = u_{\lambda} - u_{\eta} - (r_{\lambda} - r_{\eta}) \in \mathbb{R}$. Lemma A.13 [2] implies that for any $p \in \mathfrak{B}$

$$
\int \Delta v \cdot p(v) + \int |\operatorname{grad} v|^2 p'(v) \le 0,
$$

$$
\int [W_{\lambda} - W_{\eta} - (\lambda - \eta)] p(v_{\lambda} - v_{\eta}) + \int |\operatorname{grad}(v_{\lambda} - v_{\eta})|^2 p'(v_{\lambda} - v_{\eta}) \le 0.
$$

Now choose $\phi \in \mathcal{X}$ with $\phi(s)=0$ for $s \leq 0$, $\phi'(s)>0$ for $s>0$ and put $p(s) = \phi(s + r_A - r_\eta)$. Then

$$
\int (W_{\lambda}-W_{\eta}+\eta-\lambda)\phi(u_{\lambda}-u_{\eta})+\int |\mathrm{grad}(u_{\lambda}-u_{\eta})|^2\phi'(u_{\lambda}-u_{\eta})\leqq 0.
$$

From the nonnegativity of $(W_\lambda - W_\eta)\phi(u_\lambda - u_\eta)$ and $\eta > \lambda$ we conclude that $u_{\lambda} \leq u_{\eta}$ a.e.

If β is continuous we conclude from $W_{\lambda} \in \beta(u_{\lambda}), W_{\eta} \in \beta(u_{\eta})$ that $W_{\lambda} \leq W_{\eta}$ a.e. In general this argument only gives $W_{\lambda} \leq W_{\eta}$ a.e. on $[u_{\lambda} < u_{\eta}]$. To get $W_{\lambda} \leq W_n$ a.e. on $[u_{\lambda} = u_n]$ we apply Kato's inequality [9] to $u_n - u_{\lambda}$:

$$
\Delta(u_{\eta}-u_{\lambda})^{+}\geq \text{sign}_{0}^{+}(u_{\eta}-u_{\lambda})\cdot \Delta(u_{\eta}-u_{\lambda})^{+}
$$

Since $(u_n - u_\lambda)^+$ = $(u_n - u_\lambda)$ we have a.e. on $[u_n = u_\lambda]$ that $\Delta(u_n - u_\lambda) \ge 0$. #

LEMMA 2.3. *If* (P_f) *has a solution* $u \in \mathcal{R}$ *and* $w = \Delta u + f$ *, then* $u_{\lambda} \downarrow u$ *and* W_{λ} \downarrow *w a.e. Thus u and w are unique. For* $j \in \mathcal{S}_0$

$$
\int j(w) \leq \int j(f).
$$

Also if \hat{u} *,* \hat{w} *correspond to* \hat{f}

$$
\int (w - \hat{w})^+ \leq \int (f - \hat{f})^+
$$

and

$$
\|\mathrm{grad}(u-\hat{u})\|_{M^2}\leq C\|f-\hat{f}\|_1,\qquad \text{for a }C>0.
$$

 $sign_0^*(s) = 0$ if $s \le 0$, $sign_0^*(s) = 1$ if $s > 0$.

PROOF. Set $v = u - u_{\lambda}$. Formula (2.5) is valid for $p \in \mathcal{P}_+$ since we have $v \in W^{1,1}_{loc}(\mathbb{R}^2)$, $|$ grad $v \in M^2(\mathbb{R}^2)$, $\Delta v \in L^1(\mathbb{R}^2)$ and $ms[v > k] < \infty$ for $k > 0$ (but $ms[v < -k]$ is infinite). We conclude that $u_{\lambda} \geq u$ a.e. and $W_{\lambda} \geq w$ a.e. as before. In the limit we obtain $u_\infty = \lim u_\lambda \geq u$ a.e. Since $\|\nabla u_\lambda\|_{M^2} \leq C \|f\|_1$ we conclude that grad $u_{\lambda} \rightarrow$ grad u_{∞} weakly in $[L_{loc}^1(\mathbb{R}^2)]^2$ and that $||grad u_{\infty}||_{M^2} \le$ $C||f||_1$ ($||\cdot||_{M^2}$ is l.s. continuous under weak L^1_{loc} -limits).

Set $w_{\lambda} = W_{\lambda} - \lambda \in \beta^{\lambda}(v_{\lambda})$. From [2], p. 527, we conclude that $\{w_{\lambda}\}\$ is relatively compact in $L_{\text{loc}}^1(\mathbb{R}^2)$ and $||w_\lambda||_1 \leq ||f||_1$. Therefore there exists $w_\infty = \lim_{\lambda \to 0} w_\lambda$, limit in $L^1_{loc}(\mathbb{R}^2)$ and a.e., and $||w_\infty||_1 \leq ||f||_1$. Also $W_\lambda = w_\lambda + \lambda \to w_\infty$ in $L^1_{loc}(\mathbb{R}^2)$. We conclude that $W_{\lambda} \downarrow w_{\infty} \geq w$. Passing to the limit in $(P)^{\lambda}$ we obtain $-\Delta u_{\infty} + w_{\infty} =$ f. As $u_{\lambda} \rightarrow u_{\infty}$ a.e. and $W_{\lambda} \rightarrow w_{\infty}$ in $L^1_{loc}(\mathbb{R}^2)$ we have $w_{\infty} \in \beta(u_{\infty})$.

We prove next that $\int \Delta u_{\infty} = 0$: Since $u \in \mathcal{R}$, $\int \Delta u = 0$, $\lim_{t \to \infty} ru'(r) = 0$, i.e. for every $\epsilon > 0$ there exists C, R such that $\tilde{u}(r) \ge C - \epsilon$ lg r for $r > R$. As $u_{\infty} \ge u$ we have $\lim_{r \to \infty} r\tilde{u}'_{\infty}(r) \ge 0$. But Proposition 2.1 implies that $\lim_{r \to \infty} r\tilde{u}'_{\infty}(r) \le 0$, so finally $\int \Delta u_0 = 0$. Thus u_0 is another solution of (P) and $u_0 \ge u$. Also we have $w_0 \ge w$; as $\int \Delta u = \int \Delta u_{\infty} = 0$, $\int f = \int w = \int w_{\infty}$, hence $w = w_{\infty}$ a.e. Finally if $\bar{v} = u_{\infty} - u$ then $v \in \mathcal{R}$, $\bar{v} \ge 0$ and $\Delta \bar{v} = 0$. It is easy to see (cf. [2], p. 533) that \bar{v} must be constant, $u_{\infty} = u + c$. We have the following situation: $u \in W^{1,p}_{loc}(\mathbb{R}^2)$ for some $1 < p < 2$, $w(x) \in \beta(u(x)) \cap \beta(u(x)+c)$ a.e., $w \in L^1(\mathbb{R}^2)$. The proof of [2], lemma 3.5, applies to imply that either $w = 0$ (impossible) or $C = 0$. Thus $u_{\infty} = u$.

The final statements of the lemma are a consequence of the passage to the limit for they are valid for the solutions of [2], when $0 \in \beta(0) \cap \text{Int }\beta(\mathbb{R})$. \neq

In particular, since (E) is invariant under rotations and solutions are unique, every possible solution of (P_f) for f radial must be radial. This implies the easy step (iii) \Rightarrow (ii) in the Theorem.

Next we use the approximations $(P)^{\lambda}$ to prove (ii) \Rightarrow (iii).

LEMMA 2.4. *If (ii) holds and* $f \in L^1_+(\mathbb{R}^2)$ *there exists a solution u of (E) with* $|grad u| \in M^2(\mathbf{R}^2)$.

PROOF. Solve $(P_f)^\lambda$ as in Lemma 2.3 and try to pass to the limit as $\lambda \downarrow 0$. As $\{u_{\lambda}\}\$ is nonincreasing we shall get a limit if we bound the sequence below. For that we use (ii): using Lemma 2.1 we take a radial $g \in L^1(\mathbb{R}^2)$ with $\int f > \int g > 0$ and such that (P_8) is solvable in \mathcal{L}_r . We set

(2.6)
$$
\begin{cases}\n-\Delta u_{\lambda} + \beta(u_{\lambda}) - \lambda \ni f, & W_{\lambda} = f + \lambda + \Delta u_{\lambda}, \\
-\Delta \hat{u}_{\lambda} + \beta(\hat{u}_{\lambda}) - \lambda \ni g, & \hat{W}_{\lambda} = g + \lambda + \Delta \hat{u}_{\lambda}.\n\end{cases}
$$

We use inequality (2.5) with $v = \hat{u}_\lambda - u_\lambda$ and $p \in \mathcal{B}_+, p(s) = 1$ for $s > 0$. Then

$$
0 \leq \int (\hat{W}_{\lambda} - W_{\lambda}) p(\hat{u}_{\lambda} - u_{\lambda}) + \int p'(\hat{u}_{\lambda} - u_{\lambda}) |\text{grad}(\hat{u}_{\lambda} - u_{\lambda})|^2
$$

(2.7)

$$
\leq \int (g - f) p(\hat{u}_{\lambda} - u_{\lambda}).
$$

As \hat{u}_λ converges a.e. to the solution \hat{u} of (P_{α}) , that is finite a.e., if $\lim_{\lambda \downarrow 0} u_\lambda < \hat{u}$ a.e. the Dominated Convergence Theorem implies that $\int (g - f) \ge 0$; false. Thus we have $u = \lim_{\lambda \downarrow 0} u_{\lambda} \geq \hat{u}$ on a set of positive measure. Since u_{λ} is nonincreasing as $\lambda \downarrow 0$ there is a k such that for every large $R > 0$, ms $\{ |u_{\lambda}| < k | \cap B_R(0) \}$ is greater than 0 uniformly in λ . Also {grad u_{λ} } is uniformly bounded in M^2 -norm, so that lemma A.16 [2] implies that $\{u_\lambda\}$ is bounded in $L_{\text{loc}}^{p^*}(\mathbb{R}^2)$ for $p^* = p/(2-p)$, $1 < p < 2$, and its limit $u \in L_{\infty}^{p^*}(\mathbb{R}^2)$.

Now repeat the argument of Lemma 2.3 to show that u is a solution. $#$

If we show that the solution of (E) found in Lemma 2.4 satisfies $\int \Delta u = 0$ the proof of (ii) \Rightarrow (iii) will be complete. Recall that Proposition 2.1 implies that $\int \Delta u \leq 0$.

LEMMA 2.5. *If (ii) holds then (P_t) is solvable in* \mathcal{L} *, for every radial* $f \in L^1_+(\mathbb{R}^2)$ *.*

PROOF. If $v \in \mathcal{Q}$, and $p \in \mathcal{P}$ it is trivial to show that $rp'(v(r))v'(r)^2 \in L^1(0,\infty)$ and

(2.8)
$$
\int_{r}^{\infty} p(v)(rv')' dr + \int_{r}^{\infty} p'(v)v'(r)^2 r dr = -p(v)rv'(r)
$$

(compare with (2.5)). Apply (2.8) to $v = u_{\lambda} - u_{\lambda}$ of (2.6) to get

$$
\int_{r}^{\infty} (\hat{W}_{\lambda} - W_{\lambda}) p(\hat{u}_{\lambda} - u_{\lambda}) r dr + \int_{r}^{\infty} p'(\hat{u}_{\lambda} - u_{\lambda}) (\hat{u}'_{\lambda} - u'_{\lambda}) r dr + p(\hat{u}_{\lambda} - u_{\lambda}) r(\hat{u}'_{\lambda} - u'_{\lambda})
$$

\n
$$
\leq \int_{r}^{\infty} |f - g| r dr.
$$

So

$$
r(\hat{u}'_{\lambda}-u'_{\lambda})p(\hat{u}_{\lambda}-u_{\lambda})\leq \int_{r}^{\infty}|f-g|rdr.
$$

As $[r(u'_\lambda-u'_\lambda)]'$ converges in $L^1_{loc}(0,\infty)$ ($\Delta(\hat{u}_\lambda-u_\lambda)$) converges in $L^1_{loc}(\mathbb{R}^2)$) and $r(\hat{u}_\lambda' - u_\lambda')$ is uniformly bounded in λ and r, we have $r(\hat{u}_\lambda' - u_\lambda') \rightarrow r(\hat{u}' - u')$ a.e. and

(2.9)
$$
r(\hat{u}'-u')p(\hat{u}-u) \leq \int_{r}^{\infty} |f-g| r dr \to 0 \quad \text{as } r \to \infty.
$$

Assume now that $\int \Delta u = c_1 < 0$. Then $\lim_{r \to \infty} ru'(r) = c_1 < 0$ so that $u(r) \sim$ c_1 lg r for all large r. Since $\int \Delta \hat{u} = 0$, $r\hat{u}'(r) \rightarrow 0$ as $r \rightarrow \infty$, so that $\lim_{r \rightarrow \infty} \hat{u}(r)/\log r =$ 0 and $\hat{u} - u > 0$ for all large r. Taking in (2.9) $p \in \mathcal{D}_+$ with $p(s) = 1$ for $s \ge 0$ and letting $r \rightarrow \infty$ we conclude that $\lim r(\hat{u}' - u') \leq 0$, contradicting the assumption.

Another step is provided by

LEMMA 2.6. *If (ii) holds then (P_f) is solvable in* \mathcal{L} *for every* $f \in L^1(\mathbb{R}^2)$ *with compact support in* \mathbb{R}^2 .

PROOF. Suppose that supp $(f) \subset B_R(0)$. By Lemma 2.4 we obtain $\lim_{\lambda \downarrow 0} u_{\lambda} =$ $u \in W^{1,1}_{loc}(\mathbb{R}^2)$. In $\{|x| > R$ we have $\Delta u_\lambda \in \beta(u_\lambda) - \lambda$, $\Delta u \in \beta(u)$. The argument in [2], p. 542, shows that $u_{\lambda} \in L^{\infty}_{loc}(|x|>R)$. Also, it can be shown that $v_{\lambda} = u_{\lambda} - r_{\lambda}$ tends to zero uniformly as $|x| \rightarrow \infty$ at any λ such that $\beta^{-1}(\lambda) = \{r_{\lambda}\}\$ (see for instance [12], lemma 4). Thus for such λ and R_1 large, $W_\lambda \in \beta(u_\lambda)$ is bounded in $[|x|>R_1]$. As W_{λ} is nonincreasing in λ and $W_{\lambda} \ge 0$, we have $w = \lim_{h \to \infty} W_{\lambda} \in L^{\infty}[|x| > R_1]$ and as in [2] we conclude that $u \in C^1(|x| > R)$. Take $R_0 > R_1$ and C such that $u(x) > C$ for $|x| = R_0$.

We build now a radial comparison function $v \in \mathcal{R}$, $v \leq C$ on $[|x| = R_0]$ and such that $-\Delta v + \beta(v) \ni g$ for a $g \in L^1[[x] > R_1]$, $g \le 0$. In fact if \bar{g} is an integrable radial function with support in $B_{R_1}(0)$ and \bar{v} is the solution of (P_s) , put $v = \bar{v} - k$, k a sufficiently large constant. Compare now u and v in $[|x| > R_0]$ to conclude that $u \ge v$. As $\lim_{r \to \infty} rv'(r) = 0$ we have $\int \Delta u = \lim_{r \to \infty} r\tilde{u}'(r) \ge 0$. (To compare u and v begin by comparing u_{λ} and v_{λ} as in [2], then pass to the limit.)

LEMMA 2.7. *If* $f_n \to f$ *in* L¹₊(\mathbb{R}^2) *and* (P_f) *is solvable, then* (P_f) *is solvable.* PROOF. Set

$$
\begin{cases}\n-\Delta u_{\lambda}^{n} + \beta(u_{\lambda}^{n}) - \lambda \ni f_{n}, & w_{\lambda}^{n} = \Delta u_{\lambda}^{n} + f_{n}, \\
-\Delta u^{n} + \beta(u^{n}) \ni f_{n}, & w_{n} = \Delta u^{n} + f_{n}; \\
-\Delta u_{\lambda} + \beta(u_{\lambda}) - \lambda \ni f, & w_{\lambda} = \Delta u_{\lambda} + f, \\
-\Delta u + \beta(u) \ni f, & w = \Delta u + f \quad \text{(as in Lemma 2.4).}\n\end{cases}
$$

We have $\int w^n = \int f_n = \int w^n$. Also $||w^n - w_n||_1 \le ||f - f_n||_1$. But $w^n - w_n \to w^n - w$ in $L_{\text{loc}}^1(\mathbb{R}^2)$ and a.e. By Fatou we have $||w^n - w||_1 \leq ||f - f_n||_1$.

$$
\left|\int w-f\right| \leq \int |w-w^n| + \left|\int w^n - f_n\right| + \int |f_n - f| \leq 2\|f_n - f\|_1 \to 0
$$

as $n \to \infty$. Therefore $\int w = \int f, \int \Delta u = 0$.

#

Thus the proof of (ii) \Rightarrow (iii) and of the Theorem is complete. We record the main properties of the solutions of (P):

PROPOSITION 2.2. *The following holds for the solutions of (P) in the class* \mathcal{L} *:*

(i) $G : f \mapsto u$ is a single-valued order preserving map from $L^1_+(\mathbf{R}^2)$ into $W^{1,p}_{loc}(\mathbf{R}^2)$, $1 \leq p < 2$. Every solution $u \in \mathcal{L}$ converges to $-\infty$ at infinity in measure, in integral *mean and in angular mean. G is bounded on any weakly relatively compact subset of* $L_a^1(\mathbb{R}^2) = \{f \in L^1(\mathbb{R}^2) : f \ge a\}, a > 0$, and hence it is weakly sequentially *continuous.*

(ii) $T : f \rightarrow w$ is an ordered contraction of $L^1_+(\mathbf{R}^2)$ invariant under rotations and *translations.*

(iii) *If* $j \in \mathcal{S}_0$ *and* $f \in L^1_+(\mathbb{R}^2)$, $w = Tf$:

$$
\int j(w) \leq \int j(f).
$$

In particular $||w||_p \le ||f||_p$, $1 \le p < \infty$, sup $w \le \sup f$.^{*}

(iv) *There is a constant* $C \leq ||\text{grad } E_2||_{M^2}$ *such that*

$$
||\text{grad}(u - \hat{u})||_{M^2} \leq C ||f - \hat{f}||_1.
$$

PROOF. Most of the properties are consequences of theorem 3.1, [2] after passing to the limit. The convergence of u is a consequence of Lemma 2.8 to follow. Let us prove the boundedness of G: Let F be a subset of $L^1_+(\mathbf{R}^2)$ such that, uniformly in $f \in F$, (i) $\int f \ge a$, (ii) there exists a constant C_1 such that $\int |f| \leq C_1$, (iii) for every $\varepsilon > 0$ there exists a compact $K \subset \mathbb{R}^2$ such that $\int_{\mathbb{R}^2 - K} |f| <$ ϵ , (iv) for every $\epsilon > 0$ there exists $\delta > 0$ such that if $\Omega \subset \mathbb{R}^2$ and $ms(\Omega) < \delta$ then $\int_{\Omega} |f| < \varepsilon.$

We repeat the proof of Lemma 2.6. Letting $\lambda \downarrow 0$ and $p(s) \rightarrow sign_0(s)^{1}$ we obtain from (2.7) with $u = u_r$

$$
\int_{[u_f>0]}(f-g)\geq \int_{[u_f<0]}(f-g).
$$

If $f \in F$ and $f|g| < a/3$, we conclude that $f_{[u_f \ge u]}f > a/3$. This implies that $ms[u_t \ge v] \le \delta$ for a certain $\delta > 0$. On the other hand $ms[u_t > \lambda] \le$ $\beta^{0}(\lambda)^{-1} \int w_t \leq \beta^{0}(\lambda)^{-1} ||f||_1$. Thus on any sufficiently large ball B there exists $\lambda > 0$ such that $ms[|u_f| > \lambda] \equiv \sigma > 0$, σ independent of $f \in F$. Then lemma A.16 [2] implies that $\{u_f\}$ is bounded in $L^{p^*}(\mathbb{R}^2)$, $p^* < \infty$.

LEMMA 2.8. Let β be a m.m. graph such that $\beta(s) > 0$ for $s > a$, $a \in \mathbb{R}$. Let $\overline{\ }$ inf $w = 0$.

" sign_o $(s) = 1$ if $s > 0$, 0 if $s = 0, -1$ if $s < 0$.

268 J. L. VÁZQUEZ Isr. J. Math.

 $u \in \mathcal{Q}$ be a solution of $-\Delta u + \beta(u) \ni f, f \in L^1(\mathbb{R}^2)$. Then $\limsup u \leq a$ in *measure, in integral mean and in angular mean, as* $|x| \rightarrow \infty$.

PROOF. If $w = \Delta u + f \in L^1(\mathbb{R}^2)$, $w \in \beta(u)$ a.e. it is immediate that $\limsup_{x\to\infty} u \le a$ (m), i.e. $ms[u > \lambda] < \infty$ if $\lambda > a$.

For the convergence in mean apply (2.2) for $\lambda > a$:

$$
\int_{B_R} |u| \leq \int_{B_R} (u - \lambda)^+ + \lambda |B_R| \leq C \| \text{grad } u \|_{M^2} m s [u > \lambda] + \lambda |B_R|.
$$

We conclude that $\limsup_{R\to\infty} |B_R|^{-1} \int_{B_R} u(x) dx \le a$.

For the angular convergence, suppose that $\limsup_{r\to\infty} \tilde{u}(r) = b > a$. Take a sequence $\{r_n\}$ with $r_{n+1} \geq 2r_n$ and $\tilde{u}(r_n) \geq b-\varepsilon$ for an ε , $b-a > 2\varepsilon > 0$. As $r\tilde{u}'(r) \rightarrow 0$ take $n(\varepsilon)$ such that for $n \ge n(\varepsilon)$ and $r \ge r_n$, $|r\tilde{u}'(r)| \le \varepsilon^2$. Now for $r_n \le r \le r_n/\varepsilon$ we have for ε small enough

$$
|\tilde{u}(r)-\tilde{u}(r_n)|\leqq \int_{r_n}^r |u'(r)| dr \leqq \varepsilon^2 \lg(r/r_n) \leqq \varepsilon^2 \lg|\varepsilon| < \varepsilon
$$

thus $u(r) > b - 2\varepsilon$. But now

$$
\int_{[r_n\leq |x|\leq r_n/\varepsilon]} u(x)dx \geq (b-2\varepsilon)ms[r_n\leq |x|\leq r_n/\varepsilon].
$$

This contradicts $\limsup_{R\to\infty} |B_R|^{-1} \int_{B_R} u \leq a$.

3. $N = 1, 2$. **A general discussion**

 $N = 2$. We discuss here the two-dimensional problem

$$
(\mathbf{P}_{\beta f}) \qquad -\Delta u + \beta(u) \ni f, \qquad \int \Delta u = 0.
$$

We seek solutions for $f \in L^1(\mathbb{R}^2)$ in $\mathcal{Q} = \{u \in W^{1,1}_{loc}(\mathbb{R}^2): |\text{grad } u| \in M^2(\mathbb{R}^2),\}$ $\int \Delta u = 0$. Several cases occur:

Case 1. $0 \in \text{Int } \beta(\mathbb{R})$

By translation we may consider that $0 \in \beta(0) \cap \text{Int } \beta(\mathbf{R})$ as in [2]. Theorem 3.1, [2] says that (P) is well-posed in $\mathcal{Q}_1 = \{u \in W^{1,1}_{loc}(\mathbb{R}^2), |\text{grad } u| \in M^2(\mathbb{R}^2)\}\)$. $\int \Delta u = 0$ comes as a consequence of $w \in L^1(\mathbb{R}^2)$, $w \in \beta(u)$ *a.e.* Thus (P) *is well-posed in* Ω *.*

Case 2. $0 \notin \beta(\mathbb{R})$

Consider only the case $\beta(\mathbf{R}) \subset (0, \infty)$. This is our Section 2. (P) *is well-posed from L*¹_{*(R²)} <i>into* Ω *if and only if* β *satisfies condition (B₂) <i>at* $-\infty$.</sub>

$$
^{\#}
$$

Case 3. $\beta = 0$

As $T: f \rightarrow w$ is the zero map, (P) *degenerates* from our point of view. $-\Delta u = f$ has solution (determined up to a constant) in BMO(\mathbb{R}^2), the space of functions of bounded mean oscillation. If $\int f = 0$ they belong to Ω by virtue of

LEMMA 3.1. Let $N \ge 2$, $u \in W_{loc}^{1,1}(\mathbb{R}^N)$, $\Delta u \in L^1(\mathbb{R}^N)$ and grad $u(x) \rightarrow 0$ in *absolute integral mean as x* $\rightarrow \infty$ *. Then* $u = E_N * (-\Delta u) + c$ *for a certain* $c \in \mathbb{R}$ *.*

PROOF. If $N \ge 3$ we have the convolution $L^{1}(\mathbf{R}^{N})^* M^{N/(N-2)}(\mathbf{R}^{N}) \rightarrow$ $M^{N/(N-2)}(\mathbf{R}^{N})$, see appendix [2]. For $N=2$ we have $L^1(\mathbb{R}^N)$ *BMO(\mathbb{R}^2) \rightarrow BMO(\mathbb{R}^2). See Appendix at the end of this work.

Thus set $\bar{u}=(-\Delta u)*E_N$. Then $|grad \bar{u}| \in M^{N/(N-1)}(\mathbb{R}^N)$. Put $v_i=$ $(\partial/\partial x_i)(u - \bar{u})$ for $i = 1, \dots, N$: $v_i \in L^1_{loc}(\mathbb{R}^N)$ and $\lim_{x \to \infty} v_i = 0$ (a.i.m.). Lemma A.8, [2] implies that $v_i = 0$, hence $u = \bar{u} + c$. #

Thus (P) *is well-posed from* $\{f \in L^1(\mathbb{R}^2) : f = 0\}$ *into* Ω .

Case 4. β non-positive or non-negative and $0 \in \beta(0)$

Consider, for instance, $\beta(\mathbf{R}) \subset [0, \infty)$ and $\beta^{-1}(0) = (-\infty, b]$, $b \in \mathbf{R}$. Then

(i) $f > 0$. Theorem 2.1 and Proposition 2.2 apply with minor changes; now we get limsup_{r-x} $\tilde{u}(r) \leq b$. If $f \geq 0$ a.e., $f \neq 0$ then $u \geq b$ a.e. Solutions are unique.

(ii) $\int f < 0$. No solution exists (see Corollary 2.1).

(iii) If $f = 0$, necessarily $w = \Delta u + f = 0$ a.e. for any solution ($\int w = \int f = 0$ and $w \ge 0$). Thus we are reduced to solve $-\Delta u = f$ with $u \in \mathcal{L}$ (case 3) and also u bounded above. This last condition is fulfilled if $f \in L^p(\mathbb{R}^2)$, $1 < p \leq \infty$, f has compact support (and $\int f = 0$): then $f * E_2$ is a continuous solution of (P) that converges to zero at ∞ (uniformly, $u(x) = O(|x|^{-1})$). On the other hand take $f\in L^1(\mathbb{R}^2)$, $\int f=0$ and $f(x)=(r\lg(1/r))^{-2}$ for all $r=|x|$ small. Then u is equivalent near 0 to $\lg(-\lg r)$, so that $u(0) = +\infty$.

(P) *is well-posed from a V, L*¹₊(\mathbb{R}^2) $\subset V \subset \{f \in L^1(\mathbb{R}^2); f \geq 0\}$ *into* Ω . (For the well-posedness use the Lemma 2.3.)

 $N = 1$. Here

$$
(\mathbf{P}_{\beta,f}) \qquad \qquad -u'' + \beta(u) \ni f, \qquad u'(\pm \infty) = 0.
$$

We take $\mathcal{Q} = \{u \in C^1(\mathbf{R}) : u'(\pm \infty) = 0\}$. The same cases as in $N = 2$ apply and similar phenomena occur. Case 1 is dealt with in [2]: (P) *is well-posed in 2.* Case 2 for positive β is Crandall and Evans's [6]: (P) *is well-posed from L*¹₊(**R**) *into* Ω *if and only if* β *is integrable at* $-\infty$ *.*

Case 3, $\beta = 0$ has the explicit solution $u = c - x \int_{-\infty}^{x} f(s) ds$ $f^*f(s)ds + f^*f(s)sds; u \in \mathbb{R}$ if and only if $\int f = 0$ and case 4 goes as in $N = 2$: thus if $\beta \ge 0$ and $\int f = 0$ we are reduced to solve $-u'' = f$ with $u \in \Omega$ bounded above. As $u \in C^1(\mathbb{R})$ non-boundedness can occur only at ∞ . For instance, if f has compact support, u is constant outside supp(f) and (P_i) is solvable. On the contrary, if $f \in L^1(\mathbb{R})$, $\int f = 0$ and $f(x) = x^{-2}$ for large x, $u(x)$ is equivalent to lg x as $|x| \rightarrow \infty$ and (P_f) is not solvable.

4. $N \ge 3$

The situation is quite different in dimensions $N \ge 3$. Thus it is shown in [1] that we can impose the condition $\int \Delta u = 0$ on the solutions of [2] only if β satisfies

$$
\lim_{r\to 0}\int_0^r\beta(r)|r|^{-2(N-1)/(N-2)}dr=\infty.
$$

On the other hand, [2] shows solutions in $M^{N/(N-2)}(\mathbb{R}^{N})$, hence they converge to 0 (a.i.m.). In fact lemma A.5 [2] says that for a $u \in L^1_{loc}(\mathbb{R}^N)$, $N \ge 3$ with $\Delta u \in L^{1}(\mathbb{R}^{N})$, $\lim_{x \to \infty} u = 0$ (a.i.m.) if and only if $u = E_{N} * (-\Delta u)$ and hence $u \in M^{N/(N-2)}(\mathbb{R}^N)$ and $|grad u| \in M^{N/(N-1)}(\mathbb{R}^N)$.

Set $\mathcal{Q} = \{u \in L^1_{loc}(\mathbb{R}^N) : |\text{grad } u| \in M^{N/(N-1)}(\mathbb{R}^N)\}\$ and $\mathcal{Q}_c = \{u \in W^{1,1}_{loc}(\mathbb{R}^N):$ $u - c \in M^{N/(N-2)}(\mathbb{R}^N)$, $\mathcal{L}_c \subset \mathcal{L}$. Bénilan and Brézis [1] have studied (P) = (E) in case $\beta(\mathbf{R}) \ni 0$. If $\beta^{-1}(0) = \{a\}$, (P) *is well-posed in* \mathcal{L} *and* \mathcal{L}_a . But if $\beta^{-1}(0) =$ $[a, b], -\infty \leq a \leq b \leq \infty$, (P) is well-posed in \mathcal{R}_c for every $c \in \beta^{-1}(0)$; (P) is *well-posed in* Ω *only if* $\beta = 0$. Every solution in Ω belongs to an Ω_c .

If $0 \notin \beta(\mathbf{R})$ we show a *negative* result: A reasonable well-posed problem is not possible as a consequence of the following

PROPOSITION 4.1. Let $u \in W^{1,1}_{loc}(\mathbb{R}^N)$ with grad $u \to 0$ (a.i.m.) *[in particular if* $|grad u| \in M^{N/(N-1)}(\mathbb{R}^N)$ *and* $\Delta u \in L^1(\mathbb{R}^N)$ *and let* β *be a m.m.g. such that* $\beta(\mathbf{R}) \subset (0, \infty)$. Then $\beta^0(u)$ is not integrable on \mathbf{R}^N .

PROOF. Under the conditions of the proposition, Lemma 3.1 implies that $u = E_N * (-\Delta u) + c$ for a certain $c \in \mathbb{R}$. Thus $\lim_{x \to \infty} u = c$ in measure. But $\beta^{0}(u) \in L^{1}(\mathbb{R}^{N})$ and $\beta(\mathbb{R}) \subset (0,\infty)$ imply that $u \to -\infty$ in measure, a contradiction. $\#$

Proposition 4.1 excludes, for instance, the possibility of any *radial* solution, for if $u = u(r)$ is a radial solution, $u \in C^1(0, \infty)$ and $u'(r)r^{N-1}$ is bounded. But this implies $|\text{grad } u| = |u'(r)| \in M^{N/(N-1)}(\mathbb{R}^N)$ (see lemma A.3 [2]).

Appendix

We collect here a series of results, some of them well-known, related to the solution of $-\Delta u = f \in L^1(\mathbb{R}^2)$. We thank R. Moriyon for valuable advice.

LEMMA A.1. *The convolution* $(f, g) \mapsto f * g$ is a continuous bilinear mapping $H^1(\mathbb{R}^N)\times L^1(\mathbb{R}^N)\rightarrow H^1(\mathbb{R}^N)$, where $N\geq 1$ and H^1 denotes the Hardy space.

PROOF. Let R_i , $j = 1, \dots, N$, be the Riesz transforms, $R_i : L^1 \rightarrow \mathcal{G}'$ (the space of tempered distributions) defined by

$$
R_i f(\xi) = \frac{\xi_i}{|\xi|} \hat{f}(\xi),
$$

where \wedge denotes Fourier transform. Since $H^1(\mathbb{R}^N) = \{f \in L^1(\mathbb{R}^N):$ $R_i(f) \in L^1(\mathbb{R}^N)$, $j = 1, \dots, N$ is normed by $||f||_{H^1} = ||f||_{L^1} + \sum_{i=1}^N ||R_i f||_{L^1}$ and $R_i(f * g) = R_i f * g$ in \mathcal{S}' (check the Fourier transforms), we deduce for $f \in$ $H^{1}(\mathbb{R}^{N}), g \in L^{1}(\mathbb{R}^{N})$ that

$$
||f * g||_{H^1} \leq ||f||_{H^1} \cdot ||g||_{L^1}.
$$

We recall that the members of the space $BMO(\mathbb{R}^N)$ of "functions of bounded mean oscillation" are classes of functions up to an arbitrary additive constant. Denote by $[f]$ the class of f. We have

LEMMA A.2. *There is a continuous bilinear mapping* $BMO \times L^1 \xrightarrow{\tilde{\alpha}} BMO$. *For* $[f] \in BMO(\mathbb{R}^N)$, $g \in L_0^1(\mathbb{R}^N)$ *(integrable with compact support),* $*$ *is ordinary convolution (except for a constant). If* $g_n \n\t\in L_0^1$ *and* $g_n \to g$ *in* $L^1(\mathbb{R}^N)$

$$
f * g(x) = \lim_{n \to \infty} \int_{\mathbf{R}^N} f(t)g_n(x - t)dt
$$
 (limit in BMO).

PROOF. Since BMO(\mathbb{R}^{N}) is the dual of $H^{1}(\mathbb{R}^{N})$, we define * by adjointness: for $[f] \in BMO(\mathbb{R}^N)$, $g \in L^1(\mathbb{R}^N)$, $h \in H^1(\mathbb{R}^N)$ the following formula must hold:

 $\langle [f * g], h \rangle_{BMO \times H^1} = \langle [f], g * h \rangle_{BMO \times H^1}$

where $\tilde{g}(s) = g(-s)$. So we have immediately

$$
||f * g||_{\text{BMO}} \leq ||f||_{\text{BMO}} \cdot ||g||_1.
$$

If $g \in L_0^1(\mathbb{R}^N)$, the integral $f * g(x) = \int f(t)g(x - t)dt$ converges a.e. and belongs to $L^1_{loc}(\mathbb{R}^N)$. By checking on the atoms of $H^1(\mathbb{R}^N)$ (compactly supported and bounded generators of H^1 , see [11]) we conclude that $[f * g] = [f * g]$. For the final statement we use the continuity of $\tilde{*}$. $\#$

LEMMA A.3. *If* $[f] \in BMO(\mathbb{R}^N)$, $\nabla f \in M^p(\mathbb{R}^N)$ *and* $g \in L^1(\mathbb{R}^N)$. *Then* $\nabla (g \tilde{*} f) = g * \nabla f \in M^p(\mathbb{R}^N).$

PROOF. Take first $g \in L_0^1(\mathbb{R}^N)$; the verification is immediate. For general $g \in L^1(\mathbb{R}^N)$, if $g_n \to g$ in L^1 , then $f * g_n \to f * g$ in BMO and $\nabla f * g_n \to \nabla f * g$ in $L_{\text{loc}}^1(\mathbb{R}^N)$ (for the convolution $M^p \times L^1 \rightarrow M^p$, see [2]). Thus we obtain the **following**

PROPOSITION A.1. *For every* $g \in L^1(\mathbb{R}^2)$ *there is a unique solution of* $-\Delta u = g$ *in* $\mathfrak{D}'(\mathbf{R}^2)$ *in the class* $\{u \in L^1_{loc}(\mathbf{R}^N) : |\text{grad } u| \in M^2(\mathbf{R}^2)\}\)$ *except for an arbitrary additive constant. It is given by*

$$
u = \frac{1}{2\pi} \lg \frac{1}{|x|} * g \in \text{BMO}(\mathbf{R}^2)
$$

and then

$$
\operatorname{grad} u = -\frac{1}{2\pi|x|} * g \in M^2(\mathbf{R}^2).
$$

PROOF. Existence follows from the lemmas. Uniqueness was proved in Lemma 3.1. $#$

REFERENCES

1. Ph. Bénilan and H. Brézis, *Nonlinear problems related to the Thomas-Fermi equation*, in preparation.

2. Ph. Bénilan, H. Brézis and M. G. Crandall, *A semilinear elliptic equation in* $L^1(\mathbb{R}^N)$, Ann. Scuola Norm. Sup. Pisa 4 (1975), 523-555.

3. Ph. Bénilan and M. G. Crandall, *The continuous dependence on* ϕ *of the solution of* $u_t - \Delta \phi(u) = 0$, M.R.C. Technical Report MC 578-01245.

4. H. Brézis, *Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,* Lecture-Notes 5, North-Holland, Amsterdam, 1973.

5. M. G. Crandall, *An introduction to evolution governed by accretive operators,* in *Dynamical Systems: An International Symposium,* Vol. 1 (L. Cesari, J. K. Hale and J. P. La Salle, eds.), Academic Press, New York, 1976, pp. 131-165.

6. M. G. Crandall and L. C. Evans, *A singular semilinear equation in L*¹ (R) , Trans. Am. Math. Soc. 225 (1977), 145-153.

7. L. C. Evans, *Application of nonlinear semigroup theory to certain partial differential equations,* in *Nonlinear Evolution Equations* (M.G. Crandall, ed.), 1979.

8. S. D. Fisher, *Singular semilinear equations in* L~(RN), Isr. J. Math. 28 (1977), 128-140.

9. T. Kato, *Schr6dinger operators with singular potentials,* Isr. J. Math. 13 (1972), 133-148.

10. T. Kurtz, *Convergence of sequences of semigroups of non-linear operators with an application to gas kinetics,* Trans. Am. Math. Soc. 186 (1973), 259-272.

11. R. H. Latter, *A decomposition of lip(R") in terms of atoms,* Studia Math. 62 (1977), 92-101.

12. J. L. Vázquez, *On a semilinear equation in* \mathbb{R}^2 *involving bounded measures*, Proc. R. Soc. Edinburgh, to appear.

DIVISIÓN DE MATEMÁTICAS

UNIVERSlDAD AUTONOMA DE MADRID **CANTOBLANCO** MADRID, SPAIN